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Abstract

The European Union Emissions Trading System is set to substantially increase the

effective carbon price faced by airlines. To quantify the impact of this carbon reg-

ulation on the European airline industry, we estimate a two-stage model of airline

competition with endogenous route entry and pricing using European data on mar-

ket shares and prices. Counterfactual simulations indicate that network changes are

concentrated among low-cost and regional carriers, while full-service carriers’ networks

remain largely unaffected. The simulations also show that the policy benefits Central

and Eastern Europe, while hurting long-haul markets. Our analysis further shows that,

while the carbon policy can reduce airline profits by up to 17%, it increases consumer

surplus by up to 9% and reduces total distance flown—a proxy for emissions—by up to

6.6%. Thus, the tax is largely incident on airlines rather than consumers. These results

suggest that carbon regulation can achieve both environmental and welfare gains in

airline markets.
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1 Introduction

The aviation industry’s growing share of EU greenhouse gas emissions presents a sig-

nificant environmental challenge, as near-term technological solutions like new aircraft and

Sustainable Aviation Fuels (SAFs) are not yet viable at scale. This gap between climate

goals and the slow pace of innovation motivates market-based policies like the EU Emis-

sions Trading System (EU-ETS) to drive emissions reductions. This paper investigates the

competitive and network-level effects of such carbon regulations on the European airline in-

dustry, analyzing how these policies affect airline competition and endogenous route network

formation. We ask: How do the distinct business models of full-service carriers (FSCs) and

low-cost carriers (LCC) shape their strategic responses to rising carbon costs? How does

regulation alter market structure through route entry and exit? And what are the ultimate

consequences for consumer welfare and its geographic distribution across Europe?

The European market’s structure is unique, shaped by factors that distinguish it sharply

from its North American or Asia-Pacific counterparts. First, because of high population den-

sities, distances between origins and destinations are shorter making indirect flights through

hub and spoke systems much less attractive. These high population densities also lead to

severe congestion at a large fraction of European airports. The continent hosts nearly half of

the world’s most congested, slot-coordinated airports (IATA) and features high aircraft utili-

sation rates. Second, because the European market includes more than 27 countries and was

deregulated much later than the US market1, the market remains highly fragmented despite

waves of privatization and consolidation over the past 35 years. In our empirical analysis,

we include 14 competing firms. Finally, while state aid to national carriers is prohibited, the

FSC’s in the European market are all legacy national carriers. There are legacy advantages

as well as legacy fixed costs that affect their continuing network shapes and strategies. These

legacies result in important asymmetries between FSCs and LLCs.

In summary, European airline networks are dominated by direct point-to-point short-

haul flights rather than hub-and spoke. Price competition is intense due to competition

from LCCs and due to a fragmented market structure. Overall, LCC market shares are

similar to those in the US market (50% in Europe vs 40% in the US.2)

This market structure gives rise to an intense competitive dynamic and a bifurcation

of airline business models. FSCs typically operate from major, congested primary airports,

leveraging grandfathered slot allocations, legacy hub cost advantages, and network economies

to serve both point-to-point and international connecting traffic. In contrast, LCCs exploit

1The European Council adopted three packages of economic liberalisation in 1986, 1990, and 1992,
resulting in “a substantially liberalised internal Community market” (Butcher, 2010)

2Bontemps et al. (2023).
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a point-to-point model, often from smaller, secondary airports minimising operational costs.

These divergent strategies create starkly different cost structures and fare strategies; LCCs

leverage their operational efficiencies to offer lower base fares and unbundled services, captur-

ing more of the price-sensitive market segment. Crucially, the point-to-point model affords

LCCs greater strategic flexibility in network expansion. By serving a wider portfolio of cities,

LCCs possess a combinatorially larger set of feasible new routes to enter, allowing them to

rapidly redeploy aircraft to capture emerging demand in markets that may be too thin or

unprofitable for the more rigid hub-and-spoke structure of an FSC. This fundamentally alters

the calculus of route entry and profitability across the continent.

It is within this complex competitive environment that Europe is implementing some of

the world’s most stringent aviation carbon policies, which are poised to significantly affect

airline operations. From 2026, airlines’ free allowances of carbon emissions permits under the

EU-ETS will be completely phased out. This will dramatically increase the effective carbon

price for airlines. This will be compounded by the ReFuelEU (EU Renewable Fuel) mandate

which will require that airlines to increase use SAFs between 2025 and 2050. Currently, SAFs

are several times more expensive than conventional jet fuel and face significant production

shortfalls. These cost shocks will disproportionately impact airlines based on their busi-

ness models, route structures, and margins, making the interaction between environmental

regulation and competition a first-order question for the industry’s future.

To answer these questions, we estimate a two-stage game of airline competition. In

the first stage, airlines choose their route networks and flight frequencies. In the second

stage, they compete on prices. We estimate the model using a rich dataset containing

detailed information on the European airline markets networks, prices,and market shares.

Our counterfactual analysis simulates the impact of a carbon tax, implemented through the

EU-ETS. The simulation finds a new network equilibrium using an iterative algorithm where

airlines sequentially re-optimise their route choices.

Our key findings are sixfold. First, our estimates reveal stark differences in the demand

and cost structures of FSCs and LCCs, particularly in the valuation of hub airports and the

underlying spatial distribution of fixed costs. Second, the impacts of a carbon tax are highly

asymmetric: network adjustments are concentrated amongst LCCs and smaller regional

carriers, while large FSCs with valuable and congested hubs prove remarkably resilient.

Third, the policy induces a significant geographic redistribution of welfare. Central and

Eastern European countries benefit from intensified competition on shorter routes, while

remote regions like Iceland and Norway suffer from reduced connectivity. Fourth, we find that

carbon pricing reduces aggregate airline emissions as airline networks shift towards shorter

routes. Fifth, we find that the tax is largely incident on airlines. Airline profits decline
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significantly while consumer welfare increases. Finally, we find that despite the significant

reduction in airline profits, overall, carbon pricing is total welfare-enhancing as aggregate

increases in consumer welfare and tax revenue outweigh the loss in industry profits. Thus,

the policy in aggregate produces a “double dividend” reducing the environmental externality

and forcing a competitive reallocation of aircraft that improves allocative efficiency in the

imperfectly competitive airline market. This double dividend is not equally distributed;

airlines are largely losers and consumers gain.

We contribute to the literature in two main ways. First, we build on structural models of

airline competition. While most research focuses on the U.S. market, where hub-and-spoke

networks are central to competition ((Berry (1992); Berry and Jia (2010); Aguirregabiria

and Ho (2012); Bontemps et al. (2023); Yuan and Barwick (2024))), our analysis focuses on

the European market. Existing studies of the European market that have examined specific

features such as slot allocation (Marra (2024)), LCC subsidies (Bontemps et al. (2024)), or

mergers (Bergantino et al. (2024)), our paper provides the first analysis of the equilibrium

impacts of environmental taxation in the imperfectly competitive European airline market.

Second, we advance the literature on the economic impacts of carbon taxation. While

many studies focus on the environmental efficacy of carbon pricing (Metcalf (2019); Bayer

and Aklin (2020); Timilsina (2022)), we examine how such policies fundamentally reconfigure

a large oligopolistic industry. Our approach is similar in spirit to that of Ryan (2012), who

studied the U.S. cement industry. We adapt the core insight that environmental policy is not

just a cost shock but a catalyst for changes in market structure, concentration, and welfare.

This paper is the first to apply this lens to the European airline industry, quantifying the

competitive fallout from its unique and stringent carbon policies.

Outline: Section 2 reviews the European airline market and our dataset. Section 3

presents the two-stage model. Section 4 discusses estimation and identification. Section 5

reports parameter estimates. Section 6 presents the counterfactual analysis of the EU-ETS.

Section 7 concludes.

2 Background and Data

This section provides background on the European airline industry and describes our

data sources and processing steps.
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2.1 Background: European Airline Industry

The Rise of European Low-Cost Carriers: Following the deregulation of European

aviation in 1992, consolidation of full-service carriers (FSCs) and entry, expansion and consol-

idation of low-cost carriers (LCCs) have fundamentally reshaped the continent’s competitive

landscape. LLCs market share have surged from just 5.3% in 2001 to approximately 35% by

2022. Table 1 shows that LCCs account for more than half of all intra-European passenger

traffic. The scale of this transformation is exemplified by Ryanair, which in 2023 carried 182

million passengers—more than any single FSC in Europe (Statista). The LCC sector itself

is heterogeneous, comprising two main archetypes: subsidiaries of legacy FSC groups (such

as Vueling, Eurowings, and Transavia) and independent, ‘pure-play’ LCCs (such as Ryanair,

EasyJet, and Wizz Air). It is this latter group, with its distinct business models, that has

been the primary driver of market disruption.

Table 1: Market Share Conditional on Travel

2016 2017 2018 2019
Low-cost 56.49% 55.97% 55.53% 56.36%
Full-service 43.51% 44.03% 44.47% 43.64%

The primary strategic difference between FSCs and LLCs lies in their network architec-

ture. FSCs, such as British Airways at London-Heathrow, Iberia at Madrid-Barajas, or Air

France at Paris-Charles de Gaulle, typically use a Hub-and-Spoke model to centralize oper-

ations, exploiting legacy cost advantages and economies of scale while funnelling passengers

from short-haul intra-European flights into lucrative long-haul services to the rest of the

world. In contrast, LCCs use a decentralized Point-to-Point (P2P) network, which provides

greater routing flexibility by offering direct flights between a wider variety of city pairs.

The distinction is visually apparent in Figure 1, which contrasts the hub-centric network

of Air France-KLM with the diffuse, web-like structure of Ryanair. While Ryanair maintains

large operational bases at airports like London Stansted, these do not function as connecting

hubs for transfer passengers; their strategic role is to serve large origin-destination markets,

not to facilitate transfers, underscoring the airline’s strict adherence to the P2P model.3

Second, cost structures differ markedly. FSCs incur higher per-passenger and per-flight

costs, driven by higher legacy labour and fleet costs, operations at expensive hub airports,

lower fleet utilisation, and premium offerings like business class and meal services. According

to KPMG, the cost per available seat kilometre for LCCs (excluding fuel) is 20%–30% lower

3Ryanair operates de facto hubs at London Stansted and Dublin. However, these are primarily used as
operational bases for aircraft and do not function as international hubs in the FSC sense. Their significance
lies in serving large local markets rather than facilitating connecting traffic.
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Figure 1: Route Maps of Air France-KLM (left) and Ryanair (right) in Q2 2019

than for FSCs (KPMG), granting them a substantial pricing advantage.

Third, service levels and airport selection strategies diverge. LCCs ‘unbundle’ their

product, earning a significant portion of revenue from ancillary fees for services like baggage

handling and seat selection.4 In contrast, FSCs traditionally offer a more inclusive fare.

This strategic bifurcation extends to airport choice, which is particularly notable in Europe’s

multi-airport metropolitan areas. FSCs typically operate from large international hubs, while

LCCs favour smaller, secondary airports. London provides the clearest example across its

six airports: Heathrow serves almost exclusively FSCs as the principal international hub;

Gatwick accommodates both; Stansted and Luton are major LCC bases; and the City and

Southend airports cater to specialised segments.5 Although Heathrow is the most connected,

its severe capacity constraints and high airport charges make it economically unattractive

to the LCC business model.

Slot Constraints in European Airports: Europe has many of the world’s most

congested airports, with major hubs like London Heathrow operating at or near full capacity

for decades. Expanding this infrastructure is notoriously difficult, often blocked by regulatory

constraints, political opposition, and financial challenges. As a result, airline operations are

managed by a rigid system of “slots”—the right to use a runway for a specific takeoff or

landing. The allocation of these slots is critical, as Europe is home to nearly half of the

4While FSCs increasingly adopt similar pricing practices, they are still generally perceived as offering
higher service quality. See: Daily Telegraph.

5London City mainly serves business routes (e.g., London–Paris or London–Frankfurt), while Southend
is dominated by charter airlines.
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world’s IATA Level-3 airports, where demand for flights consistently exceeds capacity.6

European aviation policymakers have long debated the allocation of scarce airport slots.

The current system, established in 1993, relies on “grandfathering,” allowing an airline to

retain its historical slots if it uses them at least 80% of the time in a season ((European

Union)). This “use it or lose it” rule gives established national carriers a powerful advantage,

letting them control valuable slot portfolios. The value of these slots has created perverse

incentives, such as running near-empty “ghost flights” during periods of low demand simply

to meet usage rules and avoid losing the asset.7

Table 2 shows that passengers flying with full-service carriers are far more likely to travel

through slot-controlled airports than their low-cost counterparts. In our model, we will

explore precisely how these airport characteristics shape airline revenues, costs, and network

expansion strategies for each carrier type.

Table 2: Share of routes including at least one slot-controlled airport

2016 2017 2018 2019
Low-cost 15.42% 14.30% 14.54% 15.08%
Full-service 32.91% 33.15% 32.48% 31.96%

Hubs, Airline, and Slot Constraints: The European airline industry has gone

through waves of consolidation over the past 35 years. Table 3 lists the current parent

airline groups, their associated operating carriers, and designated hub airports, using the

industry-standard IATA codes. Airlines are aggregated at the parent company level. For

instance, ‘IAG’ represents the International Airlines Group (IAG) which includes British

Airways (BA, the UK’s flag carrier), Iberia (Spain’s flag carrier), Aer Lingus (Ireland’s flag

carrier), and the low-cost subsidiary Vueling. IAG’s hubs include the hubs of its carriers:

London Heathrow (LHR), Madrid-Barajas (MAD) and Dublin (DUB). Carriers within the

same parent group typically coordinate operations through code-sharing and provision of

complementary routes. All major hub airports used by FSCs are slot-controlled airports; all

18 are designated as Level 3 congested under the IATA system.

Aircraft Utilisation: Aircraft utilisation directly limits an airline’s ability to adjust

flight frequencies. There are two important features of the 2019 market. First, European

carriers operated with high levels of fleet efficiency, meaning most aircraft were already near

full operational capacity, leaving little slack to increase total network frequency without

6IATA classifies airports into three categories: Level-1 airports have no significant congestion; Level-2
airports may require coordination; Level-3 airports consistently face demand that exceeds available capacity.
This system is widely used to measure airport congestion.

7This phenomenon was widely reported during the pandemic. See: Forbes.
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Table 3: Full service carriers

Parent Subsidiary airlines Hubs
IAG British Airways, Iberia, Aer Lingus, Vueling LHR, MAD, DUB, BCN, FCO

AF-KLM Air France, KLM, Transavia CDG, AMS

LH
Lufthansa, Austria Airline FRA, MUC, ZRH

Swiss, Brussels Airline, Eurowings VIE, BRU
SAS Scandinavian Airlines CPH, ARN, OSL
AY Finnair HEL
A3 Aegean Airlines ATH
LO LOT Polish Airlines WAW

Note: Hub airports represent the central hubs for all airlines under the same parent company.

expanding fleets.8 Second, the continent’s airlines were not undergoing significant fleet ex-

pansion during this period. Given the long lead times for aircraft orders—typically three to

five years—rapid capacity growth was not feasible, and no large-scale orders were pending

delivery. The high utilisation motivates a key feature of our modelling assumptions: to enter

a new route, an airline must reallocate an existing aircraft from another route within its

existing network.

2.2 Data

Our data comes from Sabre Market Intelligence (Sabre), a global distribution system that

provides travel reservation and pricing tools for many of Europe’s largest airlines, including

IAG Group, Air France-KLM Group, Lufthansa Group, EasyJet, and Wizz Air. Because this

system is actively used by airlines for fare optimisation, it offers highly accurate, itinerary-

level pricing information. Our data contains information for 2016 to 2022. We focus our

analysis on the most recent pre-covid year, 2019.

The raw Sabre data are organised at the itinerary or route level, defined as a specific

airline’s service between an origin and destination airport. Each observation includes key

characteristics such as average airfare (price), flight frequency, travel time, and passenger

volume, aggregated to the quarterly frequency. We choose the top 100 airports by passenger

volume and make two key processing decisions. First, given that only 6% of European

passengers in our sample travel on connecting flights, we restrict our analysis to the direct

flight market. Second, because airlines typically operate return services with nearly identical

prices and frequencies, we aggregate directional itineraries into a non-directional route as in

Yuan and Barwick (2024) and Bontemps et al. (2023). Finally, we supplement the Sabre

data with: (1) metropolitan population data from Eurostat (European Union), which we use

8See the report from Eurocontrol
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to construct our market size variable, (2) airport-to-airport surface distances obtained via

the Google Distance Matrix API.

Table 4 presents summary statistics. The industry is dominated by 14 parent airline

groups, with the six largest being the three primary FSCs (IAG, Air France-KLM, and

Lufthansa Group) and the three primary LLCs (Ryanair, EasyJet, and Wizz Air). These

six account for 87% of all intra-European passenger traffic. We observer 11,292 itineraries

or routes in total with 4,039 being monopoly routes and the remaining majority featuring

multi-firm competition. The important role of hubs is also evident, with nearly 22% of all

itineraries involving a flight to or from a designated hub airport. A typical route in our

sample has an average fare of approximately $86, a frequency of roughly one flight per day,

and a travel distance of about 1,400 kilometres (a flight duration of just under two hours).

In total, the routes in our 2019 sample served over 350 million passengers.

Table 4: Summary statistics

(a) Sizes: (c) Demand and cost Mean St.Dev
# firms 14 fare (100 USD) 0.86 0.57
# itineraries 11292 frequency (daily) 0.95 1.74
# markets 7025 distance (1,000 km) 1.38 0.73
# hub itineraries 2432 market size (1 million) 2.82 2.01
# monopoly itineraries 4039 product shares 1.48% 2.40%
# city pairs 2003
# passengers (1 million) 354
# quarters 4
(b) Market shares (d) Market level statistics Mean St.Dev
BA 0.16 # products 2.07 1.11
AF 0.09
LH 0.12
FR (Ryanair, LLC) 0.25
U2 (Easyjet, LLC) 0.21
W6 (Wizz Air, LLC) 0.04
Other 0.13

Hub itineraries are defined as those where at least one of the origin or destination airports is classified
as a hub airport. Market shares in panel (b) exclude outside options, such as individuals choosing not
to travel or opting for alternative modes of transportation. Fares are calculated as the average fare
across all tickets for a specific itinerary.

Table 5 reports key summary statistics for each airline’s hub cities and their charac-

teristics. While LCCs do not operate formal hubs in the traditional sense, we identify

the two most connected cities in each LCC’s network for comparative purposes. Panels

(a) and (b) reveal that FSCs maintain far greater connectivity from their hubs and oper-

ate at significantly higher frequencies, particularly on dense business routes. For instance,
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Lufthansa Group (LH) operates approximately 40 daily flights between its hubs in Munich

and Düsseldorf, while IAG operates 35 between Madrid and Barcelona. This contrast is

starkly illustrated in Panels (c) and (d), which measure network concentration. Nearly 70%

of Air France–KLM’s entire route network touches its hubs in Paris or Amsterdam, a clear

empirical signature of a Hub-and-Spoke model. In contrast, LCCs exhibit much lower con-

centration levels, with their routes more evenly distributed across a wide range of cities,

reflecting their decentralised Point-to-Point strategy.9

Table 5: Hub airport summary statistics

Airlines Top Hub Hub Index Freq Second Hub Hub Index Freq

(a) Full service:
IAG Madrid 60 2.3 London 56 2.6

AF-KLM Amsterdam 73 2.1 Paris 52 1.9
LH Frankfurt 66 3.0 Munich 64 4.0

(b) Low Cost:
FR Dublin 61 0.9 London 56 1.2
U2 London 61 1.8 Geneva 51 0.7
W6 Budapest 37 0.4 Bucharest 27 0.4

Airlines Top Hub Concentration Second Hub Concentration

(c) Full service:
IAG Madrid 14% London 25%

AF-KLM Amsterdam 36% Paris 37%
LH Frankfurt 19% Munich 18%

(d) Low Cost:
FR Dublin 7% London 7%
U2 London 12% Geneva 9%
W6 Budapest 18% Bucharest 14%

Note: The table presents key summary statistics for each airline’s hub cities. The Hub Index represents
the total number of cities served by the hub, indicating its level of connectivity. Freq refers to the
average frequency of all itineraries to/from a specific hub. Concentration refers to the proportion of
itineraries to/from this hub city relative to the total number of itineraries.

Table 6 shows that around 43% of all markets are served by more than one airline

group. It also shows that the average fare of monopoly markets is higher than that of more

competitive markets. Also, the standard deviation of fares in monopoly markets is also

higher. Table 7 shows that FSCs operate, on average, nearly two times as many routes

involving a hub as LCCs. Table 8 presents the average quarterly change in the number of

routes per parent airline. FSCs alter their portfolio of hub-related routes in response to

seasonal demand more than LCCs, particularly during the peak summer quarter (Q2).

9Wizz Air shows a relatively high concentration rate, primarily because it operated a much smaller
network in 2019 compared to the other airlines. This is also reflected in its smaller market share. Since then,
Wizz Air has expanded significantly, and its hub concentration is now closer to that of Ryanair and EasyJet.
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Table 6: Market Competition and Fare Statistics by Number of Parents

Number of Parents 1 2 3 4 5
Frequency 15,315 8,290 2,490 561 49
Percentage 57.35% 31.04% 9.32% 2.10% 0.18%
Average Fare 1.163 1.073 1.038 1.117 1.113
Std. Dev 0.578 0.456 0.365 0.374 0.426
Total Markets: 26,705; Mean Parents: 1.57; Median: 1.00

Table 7: Average Number of Routes with at Least One Hub per Parent Airline

2016 2017 2018 2019
Low-cost 201 214 233 239
Full-service 383 384 392 389

Table 8: Average Quarterly Change in Routes per Parent by Quarter

Q1 Q2 Q3 Q4

All Routes
Low-cost −13.9 44.0 10.8 −27.9
Full-service −9.9 26.3 8.3 −21.7

At least one Hub
Low-cost −1.3 5.4 2.0 −4.0
Full-service −5.0 12.0 3.4 −9.4

Figure 2 shows the passenger share, revenue share, and frequency share for each parent

airline. While LCCs like Ryanair (FR) and EasyJet (U2) have the largest passenger shares,

FSCs such as IAG (BA) and Lufthansa Group (LH) have the highest revenue and frequency

shares, reflecting their focus on premium services and dense schedules.

Figure 2: Market Share Analysis

Figure 3 shows a network analysis. The network size is the total number of airports served
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by each airline. A larger network size implies a broader set of feasible route alternatives.

The three largest full-service airlines (AF, BA, LH) and the three largest low-cost carriers

(FR, U2, W6) exhibit the largest network sizes. The network density is defined as the ratio

of observed routes to total possible routes. We also report the number of observed routes

against the number of possible routes. Full-service carriers show lower connectivity across

their served cities, reflecting their hub-and-spoke business model. Low-cost carriers have

higher network density percentages. The network efficiency, defined as the average number

of unique routes per airport, measures how intensively each served airport is used. Low-cost

carriers again score higher on this metric: for example, Ryanair (FR) operates on average

more than ten unique routes per airport it serves, whereas Air France (AF) averages fewer

than three.

Figure 3: Network Analysis

3 Model

This section introduces a static two-stage model of airlines’ entry, flight frequency, and

pricing decisions. In the first stage, airlines simultaneously decide routes to enter and flight

frequency, thereby shaping the overall flight network. In the second stage, airlines compete

on prices to attract customers.

Let g ∈ G be an airline group in the intra-European10 aviation industry, where airlines

are defined at the parent group level. A market m ∈ M is defined by a non-directional

city-pair c, d ∈ C where C is the set of cities.11 We restrict our analysis to direct flights

10Flights to and from Armenia, Azerbaijan, Georgia, Belarus, Moldova, Serbia, Ukraine, Russia, and
Turkey are excluded due to their non-compliance with current European aviation policy.

11The definition of a market as a city-pair follows Berry (1992); Aguirregabiria and Ho (2012); Yuan and
Barwick (2024).
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only, which comprise around 94% of air travel in Europe. A product j is defined to be an

airline g offering flights between airports a, b ∈ A where A is the set of airports. That is,

each j corresponds to a unique (g, a, b). Furthermore, let j = 0 denote the outside option of

not flying. Let Jgm be the set of products chosen by airline g in stage one of the two stage

game. In equilibrium, the set of products available in market m is the outside option j = 0

plus Jm =
{⋃

g Jgm

}
. That is, it is the outside option plus the set of products chosen by

airlines in stage one. We omit the time subscript t for simplicity, unless otherwise specified

and denote the number of products in market m with Jm = |Jm|.
Airline choices and consideration set: Each airline’s choices include route network

Ng, flight frequencies Fg, and prices Pg in all routes. The route network Ng is represented by

a vector where element Ng,ab = 1 if airline g enters the route between airport a and airport

b, and Ng,ab = 0 otherwise. We assume that in the short run, an airline can only operate

flights in cities in which we observe it operating in Berry (1992). We also assume that if

an airline is not operating in a slot controlled airport in 2019, it cannot enter that airport

in the short run. Furthermore, an airline can only enter its hub airport in a city unless it

is already operating in both its hub and a secondary airport. Finally, an airline can only

enter a market that is served by at least one airline. These constraints capture the fact that

expanding services in directions outside the support of the observed route network entails

greater costs. We assume these greater costs are sufficiently large that such entry is not

feasible in our estimation nor in our counterfactual simulation. Let r be a non-directional

route defined by a pair of airports (a, b) and Rg be the set of all feasible routes for airline g.

3.1 Second Stage: Pricing

In the second stage, given route networks and flight frequencies, airlines compete in

prices. They simultaneously set prices for all products in each market to maximise profits

under complete information.

Demand: The demand model is a discrete-choice model following Berry and Jia (2010)

and Yuan and Barwick (2024). For a product j in market m, the utility of consumer i is

given by:

Uijm =

−αpjm + xjmβ + ξjm + νim(λ) + λεijm if j ∈ Jm

νim(λ) + λεijm if j = 0

where xjm is a vector of product characteristics, pjm is the product price, ξjm is the unob-

served (to researchers) product characteristic, νim(λ) is the “nested-logit” shock, εijm is the

i.i.d extreme value type I utility shock, α is the price coefficient, β is the vector of utility

parameters, and λ ∈ (0, 1) is the nesting parameter. Let θd = (α, β, λ) denote the vector of
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demand parameters.

The product characteristics xjm include distance, distance squared, airline, major hub

airport, city, seasonal fixed effects, and the logarithm of flight frequency. Distance terms

affect substitution to the outside option. Higher frequency offers consumers more travel

options and greater flexibility. Third, we include airline-airport fixed effects for selected

major hub airports and their respective national carriers. This fixed effect is important

because major European hubs serve not only intra-European passengers but also a substantial

volume of intercontinental transfer passengers who fall outside the scope of our analysis.12

We include this additional fixed effect to control for the influence of intercontinental layover

traffic on observed demand patterns at major hub airports.

The model implies that the market share for product j in market m is:

sjm(pm,xm, ξm; θd) =
(
∑

k∈Jm
exp((xkmβ − αpkm + ξkm)/λ))

λ

1 + (
∑

k∈Jm
exp((xkmβ − αpkm + ξkm)/λ))λ︸ ︷︷ ︸

Probability of flying

× exp((xjmβ − αpjm + ξjm)/λ)∑
k∈Jm

exp((xkmβ − αpkm + ξkm)/λ)︸ ︷︷ ︸
Conditional probability of choosing j

where pm = (pkm : k ∈ Jm), xm = (xkm : k ∈ Jm), and ξm = (ξkm : k ∈ Jm).

Supply: Airlines simultaneously set prices in each market to maximise profits:∑
m∈M

∑
j∈Jgm

(pjm −MCjm) · sjm(pm,xm, ξm; θd) ·MSm ∀g

where MCjm is the marginal cost of product j in market m and MSm is the market size

defined as the geometric mean of the populations of the two endpoint cities. Let Om be the

ownership matrix for market m where element (j, k) equals 1 if the same firm owns both

products j and k. The Bertrand-Nash F.O.C.s for profit maximisation yield:

MCm = pm + (Om ⊙ ∂sm
∂pm

)−1sm

where MCm is a Jm×1 vector of marginal costs for all products in market m, and ⊙ denotes

the element-wise product.

12Specifically, international transfer passengers travelling on a single itinerary with a short layover are
not captured in our dataset and are excluded from the demand estimation. However, some travellers choose
to extend their stopover to visit the hub city itself. In such cases, the intra-European leg of the journey is
included in our demand sample.
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The marginal cost function is specified as:

MCjm = wjmθs + ωjm

where wjm is a vector of observable cost shifters, ωjm is an unobserved cost shock, and θs is

the vector of marginal cost parameters. We include various product characteristics in wjm,

such as distance, distance squared, log of flight frequency, airline, city, airport, and seasonal

fixed effects.

3.2 First Stage: Entry and Frequency

In the first stage, airlines simultaneously determine their route networks and choose

flight frequencies. Airlines incur fixed costs for each active route. For airline g, offering

flight network Ng and flight frequency Fg, we assume that the total fixed cost is:

FCg(Ng,Fg,κg; θfc) =
∑
j∈Rg

Ngj · (zj(fgj)θfc + κgj)

where zj(fj) is a vector of observable route characteristics including market size and fre-

quency times distance, κj is an unobserved route specific fixed cost shock, and θfc is a vector

of fixed cost parameters.κg is the vector of all route-specific shocks for airline g. Fuel costs

are a fixed cost of operating a route and are proportional to frequency times distance.

We assume that, firms choose their route networks in stage on before the second stage

shocks, ξjm and ωjm are realised.13 Let (N,F,X,W) be the networks, frequencies, product

characteristics, and marginal cost shocks of all airlines in all markets. Then, for each airline

g, expected second stage profits can be written:

Π2g(N,F,X,W; θd, θc) =

Eξ,ω

∑
m∈M

∑
j∈Jgm

(pjm −MCjm) · sjm(pm,xm, ξm; θd) ·MSm

 .

In this expression, pm is the equilibrium price vector that arises in the stage two in market

m after the demand and cost shocks (ξm,ωm) are realised. The expectation is taken over

all unobserved demand and cost shocks in all markets. We assume that the demand and

cost shocks are independent across markets and products and are identically distributed for

each airline. Furthermore, we assume airlines know the distributions of these shocks when

13Prior work, including Aguirregabiria and Ho (2012), Sweeting (2013), Eizenberg (2014), and Yuan and
Barwick (2024), make an analogous assumption.
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making entry and frequency decisions.

We assume that airlines have complete information about all competitors entry cost

shocks and simultaneously choose route networks and flight frequencies (Ng,Fg) to maximise

expected profits net of fixed costs:

Π2g(N,F,X,W; θd, θc)− FCg(Ng,Fg,κg; θfc)

3.3 Equilibrium

The equilibrium of this two-stage game is a subgame perfect pure strategy Nash equi-

librium. Airlines solve the second-stage pricing game given the route networks and flight

frequencies chosen in the first stage. The equilibrium consists of networks, frequencies, and

prices: {N∗,F∗,P∗}. The existence and uniqueness of equilibrium in the second-stage pric-

ing game are established by Nocke and Schutz (2018) for multi-product nested logit models.

However, equilibrium in the first-stage game is not guaranteed to exist, as noted by Bon-

temps et al. (2023) and Yuan and Barwick (2024). We assume the existence of a first-stage

equilibrium, but we do not assume the uniqueness and allow for multiple equilibria.

4 Identification and Estimation Strategies

The identification of demand and cost parameters is straightforward. The identification

of the nesting parameter λ follows Berry and Jia (2010). This section focuses on the identi-

fication and estimation of the linear fixed-cost parameters θfc and we omit the demand and

marginal cost parameters for brevity.

4.1 Construction of Moment Inequalities

To ease notation, we suppress dependence on (X,W, θc, θd) and on the competitors’

strategies and unobserved fixed cost shocks.

Let Π1g(Ng,Fg,κg; θfc) := Π2g(Ng,Fg) − FCg(Ng,Fg,κg; θfc) denote airline g’s profit

conditional on its own actions, its competitors actions, and all other state variables. As-

suming observed choices (N∗
g,F

∗
g) maximise profits, for any alternative actions (Na

g,F
a
g), we

have:

Π1g(A
∗
g, f

∗
g ,κg; θfc)− Π1g(N

a
g,F

a
g,κg; θfc) = ∆Π1g(N

∗
g,F

∗
g,N

a
g,F

a
g; θfc) + ∆a

g(κg) ≥ 0

where ∆Π1g(N
∗
g,F

∗
g,N

a
g,F

a
g; θfc) is the difference in profit unrelated to fixed cost shocks and

15



∆a
g(κg) is the difference in fixed cost shocks between the observed and alternative networks.

Under the linear fixed cost specification, we have:

∆Π1g(N
∗
g,F

∗
g,N

a
g,F

a
g; θfc) = Π2g(N

∗
g,F

∗
g)− Π2g(N

a
g,F

a
g)−

∑
j∈Rg

(z∗j (f
∗
j )N

∗
gj − zaj (f

a
j )N

a
gj)θfc

where z∗j (f
∗
j ) and zaj (f

a
j ) denote the observable route characteristics under the optimal and

alternative stage one choices.

We use a vector of non-negative instruments Y that are correlated with changes in profits

but uncorrelated with the fixed cost shocks difference to construct the moment inequalities.

We have K instruments available and for each instrument Yk:

E[Yk ·∆Π1g(N
∗
g,F

∗
g,N

a
g,F

a
g; θfc)] + E[Yk ·∆a

g(κg)]︸ ︷︷ ︸
=0

≤ 0

Then we construct sample moment inequalities to estimate the fixed cost coefficients θfc

following Pakes et al. (2015):

1

Na

∑
N∗

g ,F
∗
g ,N

a
g ,F

a
g

Yk ·∆Π1g(N
∗
g,F

∗
g,N

a
g,F

a
g; θfc) ≤ 0 ∀k = 1, ...K

where Na is the number of feasible alternative route networks for airline g.

4.2 Estimation Strategy

Exploring all possible alternative route networks is computationally infeasible because the

number of (Na
g,F

a
g) combinations grows exponentially with the number of routes in airline

g’s network and the number of feasible frequencies for each route. To address this challenge,

we consider only a subset of alternative route networks and frequencies.

Alternative Route Network and Frequency: Following Yuan and Barwick (2024)

and Bontemps et al. (2023), we consider only single-market deviations. Specifically, if an

airline is active in a market, we consider two alternative scenarios: (1) exiting the market

while keeping all other routes and frequencies unchanged; and (2) redeploying the same

frequency to an alternative route in which the airline is not currently active, while keeping

all other routes and frequencies unchanged.

Moment Inequalities under Single-Market Deviations: As we focus on single-

market deviations, and only consider direct flights, the demand and pricing conditions in

all other markets remain unchanged. Recall that Π1g(N
∗
g,F

∗
g) = Π2g(N

∗
g,F

∗
g)− FCg(N

∗
g,F

∗
g)

is the sum of expected profits net of fixed costs for all routes j∗ in the network N∗
g. Let
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(π1g(j
∗), π2g(j

∗), fc(j∗)) be the components of those profits and costs accruing from route j∗.

Then the inequalities arising from single-market deviations can be written:

∆π1g(j
∗, ja; θfc) =π2g(j

∗)− π2g(j
a)− (z∗j∗ − zaja)θfc − κgj∗ + κgja ≥ 0 ∀j∗ ∈ N∗

g, j
a ∈ Rg

π2g(j
∗, 0) =π1g(j

∗, 0)− κj∗ ≥ 0 ∀j∗ ∈ N∗
g

where the second inequality considers deviations that remove planes from service.

Identification: The identification of θfc relies on the differences in attributes between

observed and alternative routes. Any attribute that does not vary across routes—such as a

constant term or a full-service airline dummy—cannot be identified through these inequali-

ties. To simulate the counterfactual, we will impose a distributional assumption on the fixed

cost shocks.

Table 9 presents the attributes and expected profits of observed and alternative routes by

airline. For the Frequency×Distance measure, full-service airlines (FSCs) consistently oper-

ate longer routes than low-cost carriers (LCCs) in both observed and alternative networks.

This pattern reflects the distinct business models of the two groups. Hub-and-spoke networks

naturally link longer city-pairs to one or more hubs, whereas point-to-point strategies favour

shorter sectors to maximise daily aircraft utilisation—a hallmark of the European low-cost

model.14

The percentage change between observed and alternative networks shows that FSCs’

alternative routes have higher Frequency×Distance values than their current operations.

Because alternative frequencies are the same as the observed frequency, the increase comes

from longer average distances. Among LCCs, the picture is more heterogeneous. Easy-

Jet, often described as a “hybrid” or semi-full-service carrier, displays a pattern similar to

the FSCs, consistent with its strategy of operating both dense leisure city-pairs and key

primary airports. Ryanair’s Frequency×Distance shows almost no difference between ob-

served and alternative routes. This is intuitive because Ryanair already operates the most

extensive network in Europe, serving nearly every major city-pair of economic relevance,

so potential alternatives offer similar distances and therefore limited scope for reallocation.

Wizz Air, headquartered in Budapest and heavily focused on Eastern Europe, shows a pos-

itive difference (alternative routes shorter on average). Many of its feasible redeployments

link medium-sized cities in Central and Eastern Europe, because the largest Eastern Euro-

pean markets are already present in its current network. Several regional carriers, such as

Finnair and Icelandair, exhibit very high Frequency×Distance values, reflecting the remote

14EUROCONTROL’s Data Snapshots document the higher average stage length of full-service carriers
and the shorter, more numerous sectors flown by European LCCs.
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geographic position of their hubs (Helsinki and Reykjavik) and the long sectors required to

connect them to the rest of Europe.

FSCs also tend to serve markets with larger populations than LCCs. The difference terms

show that FSCs’ alternative routes generally connect smaller endpoint populations than their

observed routes. This is natural because most large European city-pairs are already covered

in their current networks, so remaining alternatives involve thinner markets. In contrast, all

LCCs have alternative routes with larger market size than the observed routes. This reflects

their tactical avoidance of certain large markets in the observed network—often to avoid

higher landing fees, congestion charges, or labour costs at primary airports—and their focus

on secondary airports around major metropolitan areas.15

Expected variable profits from second-stage price competition also differ by business

model. FSCs earn higher expected profits than LCCs on both observed and alternative

routes, reflecting their ability to command price premia through brand reputation, business-

class demand, and hub connectivity. The differences between observed and alternative profits

are larger for FSCs than for LCCs, a result of strong hub effects. Most of the profitable

hub routes for FSCs are already included in their current networks; alternative routes are

therefore more likely to be non-hub markets where network economies are weaker and price

competition is stronger. This large gap supports our decision to allow hub and non-hub

routes within the same full-service airline to follow different distributions of fixed-cost shocks.

Among LCCs, profit differences are modest, consistent with already optimised point-to-point

schedules and intense fare competition on thick leisure markets. All regional carriers show

higher expected profits for alternative routes. Their continued operation of current networks

is likely sustained by substantial subsidies and public-service obligations, which reduce the

private incentive to redeploy capacity even when profitable alternatives exist.16

Large full-service and low-cost carriers have far more observations than regional airlines.

On the one hand, this richer data generates greater variation for the moment-inequality

estimation. On the other hand, it allows us to estimate the fixed-cost distribution separately

for each of the six largest European airlines—a level of flexibility that is rarely achievable in

the existing literature.

15For example, Ryanair often uses airports such as Charleroi for Brussels and Beauvais for Paris, allowing
it to tap large catchment areas while avoiding the high costs of main hubs.

16Regional carriers in Europe frequently receive national or EU subsidies, particularly on thin peripheral
routes; see European Commission reports on Public Service Obligation (PSO) routes. It is worth noting,
however, that large legacy carriers such as Air France also receive state support, especially during crises.

19



5 Estimation Results

This section presents the estimation results for the demand, marginal cost, and fixed cost

components of our model.

5.1 Demand Estimation

Table 10 reports the demand-estimation results for the core parameters and selected fixed

effects. We use two types of instruments: (i) the number of products offered in each market,

and (ii) the average fare of routes with similar distances17 The first-stage F-statistic for price

is 172.55, and the heteroskedasticity-robust F-statistic is 91.16, indicating strong instrument

relevance.

Table 10: Demand Estimation Results: Core Parameters and Selected Fixed Effects

Variable Coefficient Variable Coefficient

Core Demand Parameters Airport FE
Price ($100) −5.426 (0.515) Amsterdam Schiphol −0.580 (0.082)
Log Frequency 1.217 (0.037) Frankfurt Airport −0.621 (0.105)
Distance (1,000 km) 0.325 (0.163) Madrid-Barajas −1.554 (0.118)
Distance2 0.145 (0.033) Barcelona-El Prat −1.701 (0.103)
Nesting Parameter 0.885 (0.054) Vienna International −0.742 (0.058)
Q2 0.533 (0.084)
Q3 0.181 (0.065) City FE
Q4 −0.018 (0.063) London/Southend/Cambridge −1.100 (0.160)

Paris/Pontoise −1.309 (0.145)
Airline FE Amsterdam/Rotterdam −0.580 (0.082)
British Airways 3.449 (0.401) Dusseldorf/Dortmund/Cologne −0.608 (0.194)
Air France 1.663 (0.236) Rome −1.412 (0.107)
Lufthansa 3.585 (0.452) Madrid −1.554 (0.118)
Ryanair −0.094 (0.053)
Wizz Air −0.263 (0.089) Airline-Airport FE

Air France at Paris CDG 1.987 (0.323)
Air France at Amsterdam Schiphol 1.951 (0.358)
British Airways at London Heathrow 0.633 (0.417)
Lufthansa at Frankfurt Airport −0.037 (0.259)

Notes: Standard errors in parentheses.

The estimated nesting parameter is 0.885 and is significant. In the nested-logit frame-

work, this parameter captures the correlation in unobserved utility among products within

the same nest. Here all airline itineraries form one nest and the outside option forms the

other. A value close to one indicates strong substitution among airline products and sub-

stantial correlation in their unobserved components (for example, common shocks such as

weather or macro-demand factors).

17Routes with distances between 99% and 101% of the current route.
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We convert the estimated coefficients into willingness-to-pay (WTP) measures.18 On

average, consumers are willing to pay about $22.4 for a one-unit increase in the log of

daily flight frequency, reflecting the high value passengers place on schedule convenience.

The linear and quadratic distance terms are both positive and significant at the 5% level.

Evaluated at the sample mean distance of roughly 1,000 km, consumers marginal WTP is
0.325+2×0.145×1

|−5.426| × 100 ≈ $8.6. Seasonal preferences are also evident. Relative to the baseline

quarter (Q1), consumers value spring (Q2) flights about $9.8 more and summer (Q3) flights

about $3.3 more, while winter (Q4) shows no significant difference. Carrier and hub effects

are also obvious. Full-service airlines receive sizable premia: consumers are willing to pay

roughly $32.7 more to fly with the Air France-KLM Group than with Ryanair on the same

route. Air France-KLM also enjoys strong hub advantages: itineraries involving CDG or

AMS are valued about $36 higher than competing services on identical markets. Overall,

the WTP estimates highlight the key drivers of consumer choice in European short-haul

aviation: a high value on frequency, a non-linear premium for longer distances, pronounced

seasonal patterns, and significant brand and hub advantages.

Table 11 reports the summary statistics for the own- and cross-price elasticities implied

by the estimated demand parameters. The average own-price elasticity is -4.49, which is close

to the estimate reported in Bontemps et al. (2023) (-3.78) and notably more elastic than

the values from the two-consumer-type model in Berry and Jia (2010). Elasticities of this

magnitude are consistent with evidence from the airline industry, where empirical studies of

European short-haul markets typically find own-price elasticities ranging between -3 and -5

for leisure-dominated routes. Such values indicate that passengers are quite sensitive to fare

changes: a 1% increase in price leads, on average, to roughly a 4.5% decrease in demand.

This high responsiveness reflects the availability of close substitutes—both between airlines

on the same city pair and across alternative modes of transport. The cross-price elasticities,

while smaller in absolute value, confirm significant substitution across carriers operating in

the same market, reinforcing the interpretation of a highly competitive environment.

European air travelers are generally more price sensitive, as documented in both empirical

studies and industry reports (see for example, IATA Report.) This heightened sensitivity

reflects the greater presence of low-cost carriers, denser and more competitive point-to-point

networks, and, on average, lower income levels across Europe. In contrast, the estimated

cross-price elasticities are mostly positive, consistent with standard substitution patterns

among competing airline products and confirming that passengers readily switch to rival

18WTP is calculated as the ratio of the coefficient of interest to the absolute value of the price coefficient.
It measures how much more consumers are willing to pay for a one-unit change in a product characteristic,
holding utility constant.
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carriers when relative fares change.

Table 11: Summary Statistics for Price Elasticities

5th Percentile 95th Percentile Mean Variance

Own-Price Elasticity −9.96 −1.03 −4.49 9.21
Cross-Price Elasticity 0.03 1.64 0.68 0.32

5.2 Marginal Cost Estimation

Table 12 reports the marginal cost estimates and summary statistics for markup and

marginal costs. The average marginal cost per passenger is $67.6, roughly 30% lower than

comparable U.S. estimates such as those in Yuan and Barwick (2024), who report mean

marginal costs around $95 per passenger for similar short-haul markets. This difference

is in line with broad industry evidence. European carriers consistently report lower unit

operating costs than their U.S. counterparts. For example, IATA cost benchmarking shows

that European short-haul airlines have cost per available seat kilometre (CASK) roughly 20-

35% below that of major U.S. legacy carriers over the past decade, largely because of a higher

share of low-cost carriers, denser route networks, and more efficient aircraft utilisation.19

Low-cost carriers such as Ryanair and Wizz Air routinely report CASK levels less than half

of those of U.S. full-service carriers, and their presence drives average European unit costs

downward even for network airlines.

The average route distance in our sample is 1,407 kilometres (about 875 miles), which

implies a unit cost of roughly $0.05 per kilometre or $0.08 per mile. These figures closely

match international benchmarks: Berry and Jia (2010) report about $0.06 per mile for U.S.

domestic flights, while Yuan and Barwick (2024) find around $0.08 per mile. IATA cost data

for European short-haul operations similarly cluster in the $0.05-$0.09 per mile range once

adjusted for fuel prices and exchange rates, reinforcing the plausibility of our estimates.

The implied markup is also sizeable. The average markup is $17.9, corresponding to an

average percentage markup of 35.2% and an average per-route profit of roughly $0.56 million.

These figures are broadly consistent with European airline financial statements and with the

25-35% margin estimates commonly reported for competitive U.S. domestic routes. Higher

airport charges and slot constraints in Europe may also sustain slightly higher margins even

in markets served by multiple carriers.

19See IATA Annual Review and InterVISTAS (2015) Estimating Air Travel Demand Elasticities, which
report CASK figures for major world regions.
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Table 12: Marginal Cost Estimation Results: Core Parameters and Selected Fixed Effects

Variable Coefficient Variable Coefficient

Core Cost Parameters Airport FE
Distance (1,000 km) 0.098 (0.020) Frankfurt Airport 0.099 (0.011)
Distance2 0.024 (0.006) Paris CDG 0.217 (0.026)
Frequency 0.064 (0.005) London Heathrow 0.175 (0.027)
Q2 0.090 (0.010) Amsterdam Schiphol 0.117 (0.010)
Q3 0.021 (0.010)
Q4 −0.006 (0.010) City FE

London/Southend/Cambridge 0.150 (0.017)
Airline FE Paris/Pontoise 0.041 (0.022)
Air France 0.608 (0.019) Amsterdam/Rotterdam (Randstad) 0.117 (0.01)
British Airways 0.744 (0.016) Frankfurt/Mannheim 0.099 (0.011)
Lufthansa 0.831 (0.018) Dusseldorf/Dortmund/Cologne 0.243 (0.022)
Ryanair 0.020 (0.013)
Wizz Air −0.044 (0.022)

Summary Statistics
Average Marginal Cost $67.6
Average Markup $17.9
Average Percentage Markup 35.2%
Average Profit $560,586

Notes: Standard errors in parentheses.

The cost coefficients reveal clear economic patterns. Both distance and distance2 are

positive and significant, implying that marginal cost rises at an increasing rate with route

length. This convexity reflects the growing cost of fuel, crew time, and maintenance over

longer legs and is consistent with engineering cost studies for narrow-body fleets. The coef-

ficient on frequency is also positive, in contrast to many U.S. studies where frequency often

lowers marginal cost by spreading fixed expenses across more departures. In Europe, two

factors likely drive this difference. First, European carriers operate with consistently high

load factors—often above 85%—leaving little unused capacity to absorb additional flights.

Second, high-frequency services are typically short-haul “city-hopper” routes (e.g., London-

Amsterdam or Madrid-Barcelona) where airlines deploy smaller regional jets with higher

per-seat operating costs.20

As expected, full-service carriers face higher marginal costs than low-cost airlines, and

operating from large hub airports (e.g., FRA, CDG, LHR) is also associated with higher

costs. These patterns mirror industry evidence on cost heterogeneity: full-service airlines

incur higher labour and service costs, while congested hubs impose higher landing fees

and turnaround expenses. The recovered marginal-cost distribution, together with realis-

20For example, British Airways frequently operates Embraer 190s from London City Airport to destina-
tions such as Dublin and Amsterdam, which raises per-passenger marginal costs relative to larger narrow-
body aircraft.
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tic markups and distance-cost relationships, supports the internal consistency of our model

and aligns well with both academic estimates and industry cost benchmarks for European

short-haul aviation.

5.3 Linear Fixed Cost Estimation

Table 13 reports the fixed cost estimation results. The instrument Yk includes dummy

variables indicating whether a market’s exogenous characteristic (e.g., size or population)

falls within the k-th evenly-spaced cell. Fewer instruments lead to a wider estimate set.

However, overloading the number of instruments can result in an empty estimate set. We

increase the number of instruments until an empty set is reached. Then, we report the most

precise estimate set.

Table 13: Entry Cost Estimation (in $100s)

IV Count Frequency × Distance Market Size

Diff. Ineq. Obs. Ineq. Lower Upper Lower Upper

20
10 770 1, 743 445 834
20 770 1, 657 445 834
30 770 1, 657 445 834

30
10 1, 086 1, 417 433 654
20 1, 086 1, 417 433 654
30 1, 086 1, 387 433 654

40
10 Empty Set Empty Set
20 Empty Set Empty Set
30 Empty Set Empty Set

Notes: Each coefficient is set-identified using moment inequalities. “Diff. Ineq.” refers to difference-
based moment inequalities requiring the observed route to have the highest expected profit among
alternatives. “Obs. Ineq.” refers to moment inequalities requiring observed routes to have non-negative
profits. Both sets use Market Size and Distance as instruments, with counts shown in the first two
columns. Frequency × Distance measured in daily flights × thousands of kilometers. Market size is the
geometric mean of endpoint populations in millions.

The estimation results show that, at the sample averages (Distance = 1,350 km; Market

size = 2.896 million), the implied per-flight linear component of the fixed cost (distance term

+ market-size term) evaluates to the midpoint value21 of approximately $3,602.89.
21Computation (units: USD per flight; coefficients reported in the table are in $100s):

Distance part =
(1086 + 1387)

2
× 100÷ 90× 1.350 = 1236.5× 100÷ 90× 1.350 ≈ 1,854.80,

Market size part =
(433 + 654)

2
× 100÷ 90× 2.896 = 543.5× 100÷ 90× 2.896 ≈ 1,748.09,

Total (Distance + Market) ≈ 1,854.80 + 1,748.09 ≈ $3,602.89.
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We clarify the economic interpretation of the $3.6k fixed-cost component through three

key considerations, contextualised within European airline industry benchmarks.

First, the $3.6k figure is not the total “per-flight” operating cost reported in airline finan-

cial statements. Instead, it represents the specific component of fixed costs that scales lin-

early with distance and market size within our econometric specification. Industry-standard

cost metrics typically reported on a per-flight basis—such as fuel allocated by available seat-

kilometres (ASK), variable handling fees, or aircraft turnaround costs—are captured both

within our marginal-cost and fixed cost estimates.

Second, industry benchmarking employs standardised metrics such as CASK (cost per

available seat-kilometre). European carriers exhibit substantial variation: ultra-low-cost

carriers report CASK values of 3.2-4.2 US cents, while full-service carriers exceed 10 US cents

(CAPA, 2025; Wizz Air H1 FY24). Since CASK declines systematically with stage length,

converting to per-flight equivalents requires aircraft-specific adjustments. For narrowbody

aircraft typical of European short-haul operations, industry sources report operating costs

of $2,900-$3,200 per block hour for A320/B737 aircraft (OPShots, 2015; Simple Flying,

2024), suggesting a 1.5-hour flight at 1,300km incurs approximately $4,350-$4,800 in total

costs. Within this context, our $3.6k estimate represents a reasonable fixed-cost component,

accounting for roughly 75-80% of total per-flight costs.

Third, our fixed cost shock does not have mean zero, which implies that a portion of

the true per-flight fixed cost could be partially absorbed into the intercept term. Specifi-

cally, total per-flight fixed cost comprises three components: (i) the linear term computed

here ($3.6k), (ii) the intercept (mean of the fixed cost shock), and (iii) the route-specific

idiosyncratic shock. Therefore, actual per-flight fixed costs (linear component + intercept

+ shock) will exceed $3.6k in many cases. Industry evidence confirms substantial variation

in total costs: European low-cost carriers report per-passenger costs ranging from e40 for

Ryanair to e79 for easyJet (excluding fuel), while legacy carriers like IAG and Lufthansa

operate at e159-164 per passenger (The Flight Club, 2025). With typical load factors of 85-

90% on 150-180 seat aircraft, this translates to per-flight costs varying from approximately

$5,100 to $25,000 across different business models (EUROCONTROL, 2024), supporting our

framework where fixed costs include both the linear component and additional stochastic el-

ements.
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6 Counterfactual Experiment on Carbon Policy

Carbon taxation has emerged as a pivotal policy instrument in the European aviation

industry, with significant implications for airline operational costs and route economics. The

current regulatory framework centres on the EU Emissions Trading System (EU ETS), which

has experienced substantial price volatility and structural reforms in recent years. Accord-

ing to the International Emissions Trading Association, the average EU ETS carbon price

is expected to rise from e84.4 per tonne during 2022-2025 to almost e100 per tonne during

2026-2030 (Statista). Critically, the system’s application to aviation has been significantly

strengthened, with 25% fewer free allowances allocated to aircraft operators in 2024, and

complete removal of free allocation scheduled for 2026 (European Commission). This reg-

ulatory tightening ensures that airlines will face substantially higher carbon costs in the

immediate future.

International organisations project even more dramatic carbon price escalations over the

coming decades. Advanced modelling by Enerdata indicates that EU ETS prices will pro-

gressively increase after 2030, reaching around e130/tCO2 in 2040, before rapidly escalating

to exceed e500/tCO2 by 2044 (Enerdata). These projections, spanning from approximately

$100 to $500 per tonne over the next two decades, translate to substantial operational cost

increases for airlines. For typical narrow-body aircraft operating intra-European routes,

these carbon prices correspond to additional costs ranging from approximately $1 to $5 per

kilometre flown, depending on fuel efficiency and carbon content assumptions.

Concurrent with carbon pricing pressures, the aviation industry faces mounting fuel cost

challenges through two primary mechanisms. First, conventional aviation fuel supplies are

increasingly constrained by environmental regulations and policy frameworks designed to

reduce fossil fuel dependency. Second, mandatory sustainable aviation fuel (SAF) adoption

requirements impose substantial cost premiums on airlines. Current market data indicates

that SAF costs between two to seven times more than traditional jet fuel, while EASA’s 2024

assessment shows conventional aviation fuel priced at e734 per tonne compared to aviation

biofuels at e2,085 per tonne. Industry projections suggest that SAF prices will remain two

to three times higher than conventional jet fuel until 2030 (World Economic Forum), creating

persistent upward pressure on airline fuel costs beyond carbon taxation effects.

Given these converging cost pressures from both carbon pricing mechanisms and fuel

supply constraints, we implement five counterfactual scenarios that increase the Frequency

× Distance coefficient by 1,000, 2,000, 3,000, 4,000, and 5,000 respectively. This experiment

captures the combined effects of escalating carbon taxation and higher fuel prices within a

range of $1-5 per additional kilometre flown. The lower bound reflects current EU ETS price
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levels with modest SAF adoption, while the upper bound corresponds to high carbon price

scenarios with extensive SAF mandates.

Airline competition also plays a crucial role in route network choices. While the increased

coefficients incentivise airlines to favour shorter routes, the change in route network affects

all airlines’ expected variable profits.

In Section 5.3 we estimated bounds on fixed costs and did not make any assumptions

about the distribution of fixed costs other than independence across products. To simulate

counterfactuals, we use an additional assumption on the distribution of fixed costs, assuming

these are drawn from a parametric distribution consistent with the bounds estimated in Sec-

tion 5.3. Section 6.1 discusses estimation of the fixed cost distribution under this additional

assumption. The counterfactual equilibrium concept and algorithm are described in Section

6.2. Section 6.3 presents the counterfactual results.

6.1 Fixed Cost Distribution Estimation

As noted above, we assume that fixed costs are independent across products. In addition,

we classify routes into T types and assume that for each route j of type τj fixed costs are

normally distributed:

κj ∼ N (µ(τj), σ
2(τj)).

The mean is the average fixed entry cost for routes of type τj. We define route types as

follows: routes offered by the three largest full-service airlines (BA, AF, LH) including hub

airports, these same airlines’ routes excluding hub airports, routes offered by the three largest

LLCs (FR, U2, W6), and routes offered by a pooled group of smaller airlines including and

excluding hubs. This specification captures differences in entry costs across FSCs and LLCs

and across hub and non-hub airports. There are 11 route types in total.

In Section 4.2, the single market deviation implies the following two set of inequalities:

for any airline g, observed product j∗, and alternative product j′, we have:

π2g(j
∗)− π2g(j

a)− (zj∗ − zj′)θfc − κj∗ + κj′ ≥ 0 ∀j∗ ∈ N∗
g, j

′ ∈ Jalt

π2g(j
∗)− zj∗θfc − κj∗ ≥ 0 ∀j∗ ∈ N∗

g

where Jalt is the set of feasible alternative routes for the observed route j∗.

The marginal likelihood of observing route j∗ is given by:∫ π2g(j∗)

−∞

∏
j′∈Jalt

Φ

(
π2g(j

∗)− π2g(j
′)− κj∗ + µ(τj′)

σ(τj′)

)
ϕ

(
κj∗

σ(τj∗)

)
1

σ(τj∗)
dκj∗
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and the partial log-likelihood function for all observed routes is:

∑
j∗

log

∫ π2gj(j
∗)

−∞

∏
j′∈Jalt

Φ

(
π2g(j

∗)− π2g(j
′)− κj∗ + µ(τj′)

σ(τgj′)

)
ϕ

(
κj∗

σ(τj∗)

)
1

σ(τgj∗)
dκj∗

Table 14 reports the estimation results for the lower bound, middle point, and upper

bound of the linear fixed-cost parameter estimates. They yield similar estimates for the

mean and standard deviation of the fixed cost shock distributions across all airline groups.

Hub routes for all full-service airlines exhibit negative mean fixed, while all non-hub routes

and routes operated by low-cost carriers demonstrate consistently positive means.

Table 14: Distribution for Fixed Cost Shocks by Airlines and Hub Status

Lower Bound Middle Point Upper Bound

Airline Route Type µ σ µ σ µ σ

Full-Service Airlines

Air France Non-hub 3.59 3.82 3.69 3.87 3.94 3.99
Hub −3.61 4.17 −3.72 4.19 −3.97 4.26

British Airways Non-hub 5.08 4.99 5.08 5.00 5.08 5.04
Hub −2.97 4.22 −2.97 4.27 −2.97 4.36

Lufthansa Non-hub 5.53 4.22 5.53 4.24 1.66 4.39
Hub −3.16 4.99 −3.16 5.03 −7.47 5.08

Low-Cost Airlines

Ryanair All routes 2.87 3.61 2.87 3.62 2.87 3.67
easyJet All routes 8.18 7.20 8.18 7.17 8.18 7.13
Wizz Air All routes 5.07 2.61 5.07 2.61 5.07 2.64

Pooled (Other Airlines)

Pooled Non-hub 5.64 3.67 6.11 3.72 5.61 3.70
Hub −10.22 2.12 −10.05 2.15 −10.53 2.19

Notes: The means and standard deviations are in $105. Each column block corresponds to lower bound,
middle point, and upper bound of the linear fixed-cost parameter estimates.

The negative hub route’s mean indicates the lower fixed entry costs for these routes,

which can be explained by established industry knowledge and practices. First, European

full-service airlines frequently benefit from extensive government incentive schemes and sub-

sidies, which fundamentally differs from the competitive landscape faced by major US carri-

ers. Many European airlines remain government-owned or receive substantial state support.

Research by Transport & Environment reveals that the aviation sector receives e26.4 bil-

lion of indirect subsidies annually through tax breaks on VAT (e13.6 billion) and fuel tax

exemptions (e10.7 billion) (Transport & Environment). This contrasts sharply with the

operational environment of the major US carriers, which operate as privately-owned entities

28

https://stay-grounded.org/privileged-position-revealing-the-eus-web-of-aviation-subsidies/


with limited government support. The European model of state involvement creates implicit

incentives for maintaining certain routes that serve broader economic or political objectives

beyond pure commercial viability. Second, the fundamental purpose of many hub routes

operated by major full-service airlines in Europe is to facilitate international transfer pas-

sengers connecting to or from long-haul flights (Centreforaviation.com). Evaluating these

routes in isolation, considering only point-to-point demand, would rarely demonstrate prof-

itability. The network effects and connecting passenger flows create substantial value that

is not captured in simple route-level analysis.

Ryanair’s fixed entry cost is the lowest in the sample, a result consistent with its ultra-low-

cost operational model. In contrast, easyJet’s higher entry costs reflect a significant strategic

divergence. Unlike Ryanair’s exclusive focus on secondary airports, easyJet deliberately

operates from primary airports at considerably higher costs, positioning itself to compete

directly with full-service airlines at their traditional hub airports (Industry Report). This

strategic choice necessitates substantially higher entry costs as easyJet must overcome the

established advantages of incumbent full-service carriers while operating in more expensive

airport environments. The airline’s emphasis on higher frequency services and premium

airport access creates natural barriers to entry that require substantial initial investment to

establish competitive viability.

Our estimates of fixed entry costs align closely with established industry benchmarks.

For instance, the estimated entry cost for British Airways on an average non-hub route

approximates $0.5 million per quarter, translating to nearly $2 million annually. Industry

reports indicate that route establishment costs typically range between $1.5-3 million an-

nually for full-service carriers on medium-haul European routes (IATA Airline Profitability

Report). These estimates encompass not only direct operational costs but also substantial

fixed investments required for viable route operations, including airport slot acquisition (ex-

ceeding $500,000 for premium European airports), ground handling arrangements, marketing

expenditure, and regulatory compliance costs.

6.2 Counterfactual Simulation Algorithm

As discussed in Section 4.2, solving an equilibrium for the entire network is computation-

ally feasible. We restrict airlines’ action space to single-market deviations.

Simulation Algorithm: We fix the set of feasible routes for each airline throughout the

counterfactual simulation. If a city is served by an airline, it is likely that this airline will

maintain some presence in this city, even if it exits the city in later counterfactual iterations.

For each quarter, we rank markets based on total revenues, and airlines in a market based
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on their revenues.22

Then, we begin with the market with the highest total revenue. For each airline in that

market, starting from the airline with the highest revenue, we evaluate whether redeploying

its aircraft (frequency) to an alternative route would yield a higher expected net profit. If

an airline finds a more profitable alternative route, it deviates accordingly. In addition, if

the expected net profit of the current route is negative, the airline exits the market. After

all airlines in the market have been evaluated and potential deviations executed, we proceed

to the next market in the revenue ranking and repeat the process. After a market has been

processed, the rankings of airlines in subsequent markets are updated if an airline has entered

that market. The ranking of markets are updated after all markets have been visited. This

continues until all markets have been visited. This ordering mimics real-world behaviour, as

airlines typically prioritise larger markets over smaller ones and are likely to make decisions

for larger markets first. Also, larger airlines in a market are likely established incumbents,

while other smaller airlines are likely followers.

Drawing Fixed Cost Shock: We need to draw fixed cost shocks to ensure the observed

route network satisfies the single-market deviation constraints. Our dataset contains 64,661

Quarter-Airline-Route combinations. We first draw κ̂j′ for all alternative routes. Then, κ̂j∗

is drawn from the truncated normal distribution with the following upper bound:

κ̂j∗ ≤ min
j′∈Jalt

{π2g(j
∗)− π2g(j

′)− (zj∗ − zj′)θfc − κ̂j′}

Note that all variables depend on f ∗
j which is held fixed.

6.3 Counterfactual Results

We simulate counterfactuals separately for 4 quarters, 5 carbon prices, and 3 linear fixed-

cost parameter estimates (lower bound, middle point, and upper bound). In all cases, the

algorithm converged, with convergence occurring on average around 5 iterations. Table 15

presents the counterfactual results by airline type.

Total Routes denotes the total number of unique routes in our sample. Unsurprisingly,

the summer peak season (Q2, Q3) features substantially more routes than the winter off-

peak season (Q1, Q4). Low-cost carriers contribute the majority of unique routes, followed

by full-service airlines and regional carriers. This distribution reflects the European aviation

market structure, where low-cost carriers have significantly expanded their route networks

following liberalisation.

22For the counterfactual simulation, we use the same 36 draws of ξ and ω as in the estimation of linear
fixed cost parameters.

30



T
ab

le
15
:
N
et
w
or
k
A
n
al
y
si
s
R
es
u
lt
s
-
A
ll
C
ar
b
on

S
ce
n
ar
io
s

M
e
tr
ic

L
o
w

M
e
d
iu
m

H
ig
h

V
H
ig
h

U
H
ig
h

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

T
o
ta
l
R
o
u
te
s

A
ll

24
06

28
68

29
78

25
23

24
0
6

2
8
6
8

2
9
7
8

2
5
2
3

2
4
0
6

2
8
6
8

2
9
7
8

2
5
2
3

2
4
0
6

2
8
6
8

2
9
7
8

2
5
2
3

2
4
0
6

2
8
6
8

2
9
7
8

2
5
2
3

F
u
ll
S
er
v
ic
e

73
0

86
3

90
9

77
1

73
0

8
6
3

9
0
9

7
7
1

7
3
0

8
6
3

9
0
9

7
7
1

7
3
0

8
6
3

9
0
9

7
7
1

7
3
0

8
6
3

9
0
9

7
7
1

L
ow

C
os
t

12
76

14
81

15
20

13
36

12
7
6

1
4
8
1

1
5
2
0

1
3
3
6

1
2
7
6

1
4
8
1

1
5
2
0

1
3
3
6

1
2
7
6

1
4
8
1

1
5
2
0

1
3
3
6

1
2
7
6

1
4
8
1

1
5
2
0

1
3
3
6

R
eg
io
n
al

40
0

52
4

54
9

41
6

40
0

5
2
4

5
4
9

4
1
6

4
0
0

5
2
4

5
4
9

4
1
6

4
0
0

5
2
4

5
4
9

4
1
6

4
0
0

5
2
4

5
4
9

4
1
6

T
o
ta
l
D
ev
ia
ti
o
n
s

A
ll

86
10
0

40
84

12
0

1
5
0

6
0

1
0
0

1
3
6

1
7
6

6
2

1
1
6

1
6
6

1
9
4

8
6

1
4
4

1
7
6

2
2
2

1
1
0

1
8
8

F
u
ll
S
er
v
ic
e

26
26

8
18

3
2

3
8

1
2

2
2

3
6

3
8

1
2

2
4

4
2

4
0

1
6

3
6

4
4

5
4

2
8

4
6

L
ow

C
os
t

16
20

8
24

24
2
8

1
0

2
6

3
0

3
2

1
2

3
0

3
4

3
8

1
8

2
8

4
0

4
6

2
0

3
8

R
eg
io
n
al

44
54

24
42

6
4

8
4

3
8

5
2

7
0

1
0
6

3
8

6
2

9
0

1
1
6

5
2

8
0

9
2

1
2
2

6
2

1
0
4

E
xi
t
N
u
m
be
r

A
ll

28
7

15
16

32
1
0

1
5

1
7

3
3

1
0

1
5

1
8

3
7

2
9

1
5

2
0

5
1

3
8

1
7

2
8

F
u
ll
S
er
v
ic
e

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

L
ow

C
os
t

28
7

15
16

30
7

1
5

1
6

2
9

7
1
5

1
6

2
7

7
1
5

1
6

2
9

7
1
5

1
6

R
eg
io
n
al

0
0

0
0

2
3

0
1

4
3

0
2

1
0

2
2

0
4

2
2

3
1

2
1
0

T
o
ta
l
M
a
rk
et
s

A
ll

15
48

18
11

18
67

16
15

15
4
8

1
8
1
1

1
8
6
7

1
6
1
5

1
5
4
8

1
8
1
1

1
8
6
7

1
6
1
5

1
5
4
8

1
8
1
1

1
8
6
7

1
6
1
5

1
5
4
8

1
8
1
1

1
8
6
7

1
6
1
5

F
u
ll
S
er
v
ic
e

65
9

78
3

82
8

70
2

66
0

7
8
7

8
2
9

7
0
4

6
6
1

7
8
6

8
2
9

7
0
6

6
6
2

7
8
7

8
2
9

7
0
8

6
6
3

7
9
0

8
3
0

7
0
8

L
ow

C
os
t

10
84

12
58

12
79

11
26

10
8
5

1
2
6
3

1
2
7
9

1
1
2
6

1
0
8
6

1
2
6
4

1
2
7
9

1
1
2
8

1
0
8
8

1
2
6
5

1
2
8
1

1
1
2
8

1
0
8
9

1
2
6
6

1
2
8
1

1
1
3
2

R
eg
io
n
al

36
3

46
6

48
4

38
1

37
0

4
7
3

4
8
8

3
8
5

3
7
3

4
7
8

4
9
1

3
8
9

3
7
7

4
9
0

4
9
6

3
9
6

3
7
6

4
9
1

4
9
7

4
0
3

C
h
a
n
ge
d
M
a
rk
et
s

A
ll

91
80

45
69

12
1

1
1
5

5
9

9
0

1
3
6

1
3
7

6
5

1
0
3

1
6
2

1
6
8

8
1

1
2
5

1
7
8

1
9
4

9
5

1
6
3

F
u
ll
S
er
v
ic
e

23
24

8
15

2
9

3
5

1
1

1
9

3
4

3
5

1
1

2
2

3
9

3
5

1
4

3
4

4
2

4
9

2
5

4
4

L
ow

C
os
t

43
26

22
37

5
1

3
4

2
4

4
1

5
4

3
7

2
6

4
5

5
5

4
1

3
2

4
2

6
2

4
7

3
4

5
2

R
eg
io
n
al

39
47

18
36

5
9

7
2

3
0

4
6

6
7

9
0

3
4

5
8

9
0

1
2
1

4
7

7
4

1
0
1

1
3
4

5
5

1
0
4

A
ff
ec
te
d
R
o
u
te
s

A
ll

21
3

18
3

95
15
4

27
7

2
6
8

1
2
5

2
0
8

3
1
2

3
2
3

1
4
0

2
3
6

3
7
5

3
7
2

1
7
5

2
8
2

4
0
1

4
3
3

2
0
2

3
6
5

F
u
ll
S
er
v
ic
e

29
28

6
15

3
7

3
5

1
0

1
6

3
9

4
0

1
0

1
7

4
7

3
8

1
3

3
4

5
2

5
4

2
4

4
3

L
ow

C
os
t

49
27

23
36

6
0

3
4

2
5

4
4

6
4

3
9

2
7

4
7

6
2

4
1

3
6

4
3

6
9

4
7

3
9

5
2

R
eg
io
n
al

37
42

17
32

5
1

6
3

2
6

4
1

5
8

8
1

2
9

5
1

8
5

9
9

4
1

6
1

9
6

1
1
3

4
9

8
6

T
o
ta
l
It
er
a
ti
o
n
s

C
ou

n
ts

3
3

2
3

5
4

3
3

4
3

3
3

4
1
3

4
3

4
6

4
3

31



Total Deviations measures the reallocation of aircraft to different routes by exiting current

markets and entering new ones. The number of deviations increases monotonically with

carbon cost intensity—from 40 under low carbon costs to 222 under ultra-high costs in peak

season. while deviations represent approximately 3–7% of total routes, their impact extends

far beyond this percentage, as discussed below. Crucially, the burden falls disproportionately

on regional carriers, who can account for over 120 deviations compared to just 8–54 for larger

airlines. This fragility stems from regional airlines’ longer average route lengths and thinner

profit margins. In contrast, full-service carriers benefit from hub economies of scale and

established market positions, while low-cost carriers operate higher-frequency, shorter-haul

routes that are less carbon-intensive per passenger-kilometre.

Exit Number captures routes where airlines withdraw completely rather than redeploying

aircraft. Pure exits increase substantially with carbon costs, rising from as few as 7 to

as many as 51 under extreme scenarios. Remarkably, exits concentrate almost exclusively

amongst low-cost carriers, with only scattered exits by regional carriers and virtually none

by full-service airlines across all scenarios. This pattern reflects the thin operating margins

inherent to the low-cost business model, as evidenced by the lower expected variable profits

shown in Table 9. The near-complete absence of full-service carrier exits underscores the

powerful role of hub networks and sunk investments in maintaining route viability even under

extreme carbon pricing—a finding consistent with evidence that full-service airlines exhibit

greater route persistence due to network effects and slot constraints at major airports.

Total Markets refers to unique city pairs served in our sample. Changed Markets de-

notes city pairs experiencing altered market structure between counterfactual and observed

networks, where market structure encompasses all product offerings governing competitive

dynamics. Regional airlines again show the greatest sensitivity: under ultra-high carbon

costs, approximately 25–27% of regional airline markets experience structural changes, com-

pared to less than 10% for full-service and low-cost carriers. This disparity reflects regional

carriers’ focus on thinner routes with fewer competitors, where the exit or entry of even a

single airline fundamentally alters market conditions.

Affected Routes quantifies all routes in the observed network experiencing market struc-

ture changes. Revenue and profit or those routes change despite unchanged exogenous at-

tributes through competitive spillovers. Notably, the affected routes can reach 10–20% of

the total network—substantially exceeding the direct impact measured by total deviations

alone. This multiplier effect demonstrates that carbon pricing’s competitive consequences

extend well beyond the routes directly restructured. Unlike previous metrics, affected routes

distribute more evenly across airline types relative to their network sizes, suggesting that

competitive interdependencies propagate throughout the network regardless of the type of
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airlines.

In summary, carbon pricing triggers cascading effects throughout the European aviation

network, with regional carriers bearing disproportionate adjustment costs while full-service

carriers demonstrate remarkable resilience. Crucially, the true economic impact extends far

beyond the routes directly restructured: competitive spillovers affect a substantial portion of

the network, with up to 433 routes experiencing altered profit conditions in peak season under

ultra-high carbon costs. This multiplier effect—where market structure changes propagate

throughout interconnected city-pair markets—highlights the critical importance of general

equilibrium considerations in transport policy evaluation. Analyses focusing solely on direct

route adjustments would severely underestimate the policy’s full economic consequences.

How do ticket prices, passenger numbers, and airlines’ net profits adjust when an ad-

ditional carbon cost is imposed and the route network is re-optimised? Addressing these

questions clarifies which types of routes shift for different airline groups and sets up the

welfare analysis that follows. Table 16 reports the results for Q2, which we highlight because

the Q2 network is the largest and therefore most informative; the other quarters display very

similar patterns.

We report average fares separately for routes that are common to both the baseline and

counterfactual networks and for routes that appear only in one network (i.e., non-common

routes that are either newly added or dropped). Average fares on common routes remain

stable across scenarios because the underlying market structure on those links—such as the

set of active competitors and their relative positions—changes little, so second-stage pricing

incentives are largely preserved. In contrast, for non-common routes, the pattern depends on

airline type. For large full-service and low-cost carriers, the routes that are discontinued or

replaced tend to have below-average fares, which suggests that re-optimisation targets links

where competition is stronger and price premia are limited—often because the routes do not

connect hubs or major cities and hence cannot sustain higher markups. For small regional

carriers, however, the deviated (dropped) routes typically have higher average fares; these

links are frequently (near-)monopoly services connecting remote, long-distance pairs that are

relatively costly to operate under higher carbon prices and that face thinner demand.

The mechanism linking carbon costs to fares operates through the network rather than

directly through prices in our two-stage framework. In the second stage, pricing depends on

the contemporaneous competitive structure of the realised network, not directly on costs.

Consequently, higher carbon costs influence fares by altering which routes are profitable to

operate, which then changes competitive intensity on the resulting network. This implies

that higher carbon costs do not mechanically translate into higher pass-through to prices

or lower total passenger numbers. Empirically, across counterfactuals, newly chosen routes
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exhibit higher average fares than common routes, but this difference does not necessarily

grow monotonically with the level of the carbon cost. As carbon costs rise, some previously

optimal links become unprofitable and exit; this selection margin widens the gap between

the average fares of old and new routes, which is precisely what we observe.

Passenger volumes can increase relative to the baseline even when carbon costs are higher,

because fares on common routes are nearly unchanged while the re-optimised network may

attract additional demand on newly added links. In our results, total passenger numbers rise

in all scenarios. For large carriers, the aggregate change is modest, reflecting the fact that

their core, high-capacity networks remain largely intact. For regional airlines, the propor-

tional increase is more pronounced, because their newly selected routes feature substantially

lower average fares relative to the routes they discontinue, which stimulates demand. A

decomposition confirms that most of the passenger growth for regional carriers originates

from non-common (i.e., newly operated) routes.

Higher passenger numbers and nearly stable fares do not guarantee higher net profits,

because fixed and carbon-related costs also increase. In the baseline, we estimate total

net profits across all airlines at approximately $8.89 billion (USD). This magnitude aligns

extremely well with industry evidence for 2019, which places European airlines’ net profits at

roughly e7 billion (Eurocontrol Industry Monitor June 2019) and is consistent with IATA’s

regional benchmarks (IATA Airline Industry Economic Performance June 2019).23 Across

counterfactuals, net profits decline for all airline groups and the losses increase with the

carbon cost, as expected. Full-service and regional carriers experience the largest reductions,

which is consistent with their longer average stage lengths—implying higher carbon exposure

per link—and with the relatively lower average fares on the routes they select after re-

optimisation.

In Table 17, we report the change in airlines’ net profit (producer surplus), consumer

surplus, and the carbon-related revenues paid by airlines—either to government in the form

of a carbon tax or to fuel suppliers via higher prices for sustainable fuels. We then present

the combined change in producer and consumer surplus, followed by the total welfare change

obtained by adding carbon revenues to these surplus components. For completeness, we also

report the change in daily flown distance, which provides a transparent proxy for daily carbon

savings: flying fewer total kilometres implies lower emissions, holding aircraft technology and

load factors fixed.

The results display several patterns. Net profit losses become more severe as the car-

bon cost rises, reflecting higher per-kilometre operating costs and re-optimisation away from

23Differences stem from currency units (USD vs. EUR), data vintages, coverage definitions, and the fact
that our aggregates are model-based.
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previously profitable links. By contrast, consumer surplus increases in all scenarios, because

newly entered routes tend to exhibit lower fares and attract additional passengers, consis-

tent with the demand and pricing movements documented in Table 16. On balance, the

combined consumer-producer surplus becomes more negative at higher carbon cost levels,

largely because growing profit shortfalls outweigh consumer gains.

Carbon revenues are constructed from the change in total frequency-distance cost in each

counterfactual relative to the baseline. Two forces operate simultaneously. First, the per-

kilometre charge increases with the carbon price (or the renewable-fuel premium). Second,

total frequency-distance adjusts as airlines enter and exit routes in response to profitability.

As the per-kilometre cost rises, the revenue component increases mechanically, while network

adjustments can either amplify or partially offset this depending on how total operated

distance responds.

The most consequential finding concerns total welfare, defined as the sum of the surplus

changes and carbon revenues. Once carbon revenues are included, the net welfare effect

becomes positive rather than negative. Intuitively, the carbon charge reduces distortions on

two margins. It prices the externality directly (the Pigouvian channel) and, through network

re-optimisation, can temper mark-ups on links with pronounced market power—improving

allocative efficiency even before counting the environmental benefits of lower emissions. This

mechanism is consistent with established results on corrective taxation and the “double-

dividend” discussion in environmental economics, where revenue recycling and competitive

reallocation can yield welfare gains in already distorted markets. In the European air-

line context—where many routes are effectively monopolies or duopolies—this channel is

particularly salient. The policy implication is that, provided the raised revenues are used

productively (for example, to reduce other distortionary charges or to support efficiency-

enhancing infrastructure), carbon pricing can deliver broad social gains in addition to its

primary environmental objectives.

Finally, the overall impact of the carbon policy is distributed unevenly across European

countries. Figure 4, Figure 5, and Figure 6 report the percentage changes in consumer sur-

plus, airlines’ net profits, and total welfare by country in Q2 under the UHigh counterfactual.

To attribute route-level changes to countries, we weight each route’s contribution by the pop-

ulation shares of its origin and destination cities and then aggregate to the country level. For

cities that straddle national boundaries (e.g., Copenhagen/Malmö or Vienna/Bratislava), we

split each measure evenly across the two affected countries to avoid double counting.24

24This allocation preserves country aggregates while remaining neutral with respect to cross-border func-
tional city regions.
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Figure 4: Change of Consumer Surplus by Countries (Q2, UHigh)

Consumer surplus increases most strongly, in percentage terms, in several Central and

Eastern European countries such as Poland, Slovakia, and Hungary. Two forces account

for this pattern. First, many of the newly entered routes under the carbon constraint are

relatively short-haul links within the region, which typically sustain lower average fares and

attract higher passenger volumes once the network is re-optimised. Second, these countries

offer dense catchment areas with multiple viable secondary airports, expanding entry options

and intensifying competition on newly operated links. By contrast, peripheral and island

geographies such as Iceland, Norway, Greece, and Portugal experience declines in consumer

surplus. Longer stage lengths in these regions raise carbon-related costs per flight, and the

re-optimised network is more likely to cancel or deviate from thin, long-haul leisure routes;

both the reduction in available links and the higher average fares on surviving routes depress

passenger volumes. These directional effects are consistent with industry evidence that

carbon exposure scales with distance and that periphery markets rely disproportionately on

long sectors with limited substitution options.25

25For background, see industry discussions of distance-related carbon cost exposure and the resilience of
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Figure 5: Change of Net Profit by Countries (Q2, UHigh)

Net profit changes in Figure 5 follow a similar geography. Peripheral countries see the

largest percentage drops, reflecting both higher incremental carbon costs on longer average

stage lengths and a greater incidence of route exits, which remove positive-contribution links

from the portfolio. In Central and Eastern Europe, the declines are more muted because

newly entered, demand-rich short-haul routes can offset part of the cost increase, and the

shorter sectors imply a smaller per-flight carbon cost uplift. This asymmetry aligns with pre-

existing carrier network strategies: ultra- and low-cost carriers have concentrated growth in

Central/Eastern Europe using short-haul, high-frequency networks and secondary airports,

while full-service and regional operators disproportionately serve longer or thinner markets

where the fixed and carbon-related cost burden is harder to dilute.

short-haul, multi-airport networks in Europe in 2019–2023 reporting (e.g., EUROCONTROL network and
market monitors; IATA regional outlooks).
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Figure 6: Change of Total Welfare by Countries (Q2, UHigh)

Total welfare changes mirror the joint behaviour of consumer surplus and producer sur-

plus. Central and Eastern European countries emerge as net beneficiaries under the UHigh

policy; for example, Poland records a projected total welfare gain of about 14.8%. In con-

trast, remote areas such as Iceland and Norway experience the largest welfare losses, driven

by reduced network connectivity and higher average travel costs on retained routes. For

countries hosting large hub airports—such as the UK, France, and Germany—aggregate

welfare changes are comparatively small. Hub networks tend to preserve core trunk routes

even under higher operating costs, which stabilises both prices and volumes on the common

network segment; as a result, the national aggregates move little despite rebalancing at the

margin across thinner spokes. Overall, these patterns are consistent with the notion that

carbon pricing reshapes the extensive margin of route choice more forcefully in peripheral,

long-haul-dominated markets than in central, short-haul-dense systems.
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7 Conclusion

This paper quantifies the impacts of carbon regulation on the European airline industry.

Our analysis reveals that network changes are concentrated among low-cost and regional car-

riers, while full-service carriers’ networks remain largely unaffected. The policy also triggers

a geographic redistribution of welfare, benefiting Central and Eastern Europe at the expense

of long-haul markets. Despite reducing airline profits by up to 17%, the regulation enhances

consumer surplus by up to 9% and cuts total distance flown by up to 6.6%. These findings

suggest that carbon regulation can achieve a “double dividend,” yielding both environmental

and social welfare gains.
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