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Abstract

The European Union Emissions Trading System is set to substantially increase the
effective carbon price faced by airlines. To quantify the impact of this carbon reg-
ulation on the European airline industry, we estimate a two-stage model of airline
competition with endogenous route entry and pricing using European data on mar-
ket shares and prices. Counterfactual simulations indicate that network changes are
concentrated among low-cost and regional carriers, while full-service carriers’ networks
remain largely unaffected. The simulations also show that the policy benefits Central
and Eastern Europe, while hurting long-haul markets. Our analysis further shows that,
while the carbon policy can reduce airline profits by up to 17%, it increases consumer
surplus by up to 9% and reduces total distance flown—a proxy for emissions—by up to
6.6%. Thus, the tax is largely incident on airlines rather than consumers. These results
suggest that carbon regulation can achieve both environmental and welfare gains in

airline markets.
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1 Introduction

The aviation industry’s growing share of EU greenhouse gas emissions presents a sig-
nificant environmental challenge, as near-term technological solutions like new aircraft and
Sustainable Aviation Fuels (SAFs) are not yet viable at scale. This gap between climate
goals and the slow pace of innovation motivates market-based policies like the EU Emis-
sions Trading System (EU-ETS) to drive emissions reductions. This paper investigates the
competitive and network-level effects of such carbon regulations on the European airline in-
dustry, analyzing how these policies affect airline competition and endogenous route network
formation. We ask: How do the distinct business models of full-service carriers (FSCs) and
low-cost carriers (LCC) shape their strategic responses to rising carbon costs? How does
regulation alter market structure through route entry and exit? And what are the ultimate
consequences for consumer welfare and its geographic distribution across Europe?

The European market’s structure is unique, shaped by factors that distinguish it sharply
from its North American or Asia-Pacific counterparts. First, because of high population den-
sities, distances between origins and destinations are shorter making indirect flights through
hub and spoke systems much less attractive. These high population densities also lead to
severe congestion at a large fraction of European airports. The continent hosts nearly half of
the world’s most congested, slot-coordinated airports (IATA) and features high aircraft utili-
sation rates. Second, because the European market includes more than 27 countries and was
deregulated much later than the US market!, the market remains highly fragmented despite
waves of privatization and consolidation over the past 35 years. In our empirical analysis,
we include 14 competing firms. Finally, while state aid to national carriers is prohibited, the
FSC’s in the European market are all legacy national carriers. There are legacy advantages
as well as legacy fixed costs that affect their continuing network shapes and strategies. These
legacies result in important asymmetries between FSCs and LLCs.

In summary, European airline networks are dominated by direct point-to-point short-
haul flights rather than hub-and spoke. Price competition is intense due to competition
from LCCs and due to a fragmented market structure. Overall, LCC market shares are
similar to those in the US market (50% in Europe vs 40% in the US.?)

This market structure gives rise to an intense competitive dynamic and a bifurcation
of airline business models. FSCs typically operate from major, congested primary airports,
leveraging grandfathered slot allocations, legacy hub cost advantages, and network economies

to serve both point-to-point and international connecting traffic. In contrast, LCCs exploit

!The European Council adopted three packages of economic liberalisation in 1986, 1990, and 1992,
resulting in “a substantially liberalised internal Community market” (Butcher, 2010)
2Bontemps et al. (2023).



a point-to-point model, often from smaller, secondary airports minimising operational costs.
These divergent strategies create starkly different cost structures and fare strategies; LCCs
leverage their operational efficiencies to offer lower base fares and unbundled services, captur-
ing more of the price-sensitive market segment. Crucially, the point-to-point model affords
LCCs greater strategic flexibility in network expansion. By serving a wider portfolio of cities,
LCCs possess a combinatorially larger set of feasible new routes to enter, allowing them to
rapidly redeploy aircraft to capture emerging demand in markets that may be too thin or
unprofitable for the more rigid hub-and-spoke structure of an FSC. This fundamentally alters
the calculus of route entry and profitability across the continent.

It is within this complex competitive environment that Europe is implementing some of
the world’s most stringent aviation carbon policies, which are poised to significantly affect
airline operations. From 2026, airlines’ free allowances of carbon emissions permits under the
EU-ETS will be completely phased out. This will dramatically increase the effective carbon
price for airlines. This will be compounded by the ReFuelEU (EU Renewable Fuel) mandate
which will require that airlines to increase use SAFs between 2025 and 2050. Currently, SAF's
are several times more expensive than conventional jet fuel and face significant production
shortfalls. These cost shocks will disproportionately impact airlines based on their busi-
ness models, route structures, and margins, making the interaction between environmental
regulation and competition a first-order question for the industry’s future.

To answer these questions, we estimate a two-stage game of airline competition. In
the first stage, airlines choose their route networks and flight frequencies. In the second
stage, they compete on prices. We estimate the model using a rich dataset containing
detailed information on the European airline markets networks, prices,and market shares.
Our counterfactual analysis simulates the impact of a carbon tax, implemented through the
EU-ETS. The simulation finds a new network equilibrium using an iterative algorithm where
airlines sequentially re-optimise their route choices.

Our key findings are sixfold. First, our estimates reveal stark differences in the demand
and cost structures of FSCs and LCCs, particularly in the valuation of hub airports and the
underlying spatial distribution of fixed costs. Second, the impacts of a carbon tax are highly
asymmetric: network adjustments are concentrated amongst LCCs and smaller regional
carriers, while large FSCs with valuable and congested hubs prove remarkably resilient.
Third, the policy induces a significant geographic redistribution of welfare. Central and
Eastern European countries benefit from intensified competition on shorter routes, while
remote regions like Iceland and Norway suffer from reduced connectivity. Fourth, we find that
carbon pricing reduces aggregate airline emissions as airline networks shift towards shorter

routes. Fifth, we find that the tax is largely incident on airlines. Airline profits decline



significantly while consumer welfare increases. Finally, we find that despite the significant
reduction in airline profits, overall, carbon pricing is total welfare-enhancing as aggregate
increases in consumer welfare and tax revenue outweigh the loss in industry profits. Thus,
the policy in aggregate produces a “double dividend” reducing the environmental externality
and forcing a competitive reallocation of aircraft that improves allocative efficiency in the
imperfectly competitive airline market. This double dividend is not equally distributed;
airlines are largely losers and consumers gain.

We contribute to the literature in two main ways. First, we build on structural models of
airline competition. While most research focuses on the U.S. market, where hub-and-spoke
networks are central to competition ((Berry (1992); Berry and Jia (2010); Aguirregabiria
and Ho (2012); Bontemps et al. (2023); Yuan and Barwick (2024))), our analysis focuses on
the European market. Existing studies of the European market that have examined specific
features such as slot allocation (Marra (2024)), LCC subsidies (Bontemps et al. (2024)), or
mergers (Bergantino et al. (2024)), our paper provides the first analysis of the equilibrium
impacts of environmental taxation in the imperfectly competitive European airline market.

Second, we advance the literature on the economic impacts of carbon taxation. While
many studies focus on the environmental efficacy of carbon pricing (Metcalf (2019); Bayer
and Aklin (2020); Timilsina (2022)), we examine how such policies fundamentally reconfigure
a large oligopolistic industry. Our approach is similar in spirit to that of Ryan (2012), who
studied the U.S. cement industry. We adapt the core insight that environmental policy is not
just a cost shock but a catalyst for changes in market structure, concentration, and welfare.
This paper is the first to apply this lens to the European airline industry, quantifying the
competitive fallout from its unique and stringent carbon policies.

Outline: Section 2 reviews the European airline market and our dataset. Section 3
presents the two-stage model. Section 4 discusses estimation and identification. Section 5
reports parameter estimates. Section 6 presents the counterfactual analysis of the EU-ETS.

Section 7 concludes.

2 Background and Data

This section provides background on the European airline industry and describes our

data sources and processing steps.



2.1 Background: European Airline Industry

The Rise of European Low-Cost Carriers: Following the deregulation of European
aviation in 1992, consolidation of full-service carriers (FSCs) and entry, expansion and consol-
idation of low-cost carriers (LCCs) have fundamentally reshaped the continent’s competitive
landscape. LLCs market share have surged from just 5.3% in 2001 to approximately 35% by
2022. Table 1 shows that LCCs account for more than half of all intra-European passenger
traffic. The scale of this transformation is exemplified by Ryanair, which in 2023 carried 182
million passengers—more than any single FSC in Europe (Statista). The LCC sector itself
is heterogeneous, comprising two main archetypes: subsidiaries of legacy FSC groups (such
as Vueling, Eurowings, and Transavia) and independent, ‘pure-play’ LCCs (such as Ryanair,
EasyJet, and Wizz Air). It is this latter group, with its distinct business models, that has

been the primary driver of market disruption.

Table 1: Market Share Conditional on Travel

2016 2017 2018 2019
Low-cost 56.49% 55.97% 55.53% 56.36%
Full-service 43.51% 44.03% 44.47% 43.64%

The primary strategic difference between FSCs and LLCs lies in their network architec-
ture. FSCs, such as British Airways at London-Heathrow, Iberia at Madrid-Barajas, or Air
France at Paris-Charles de Gaulle, typically use a Hub-and-Spoke model to centralize oper-
ations, exploiting legacy cost advantages and economies of scale while funnelling passengers
from short-haul intra-European flights into lucrative long-haul services to the rest of the
world. In contrast, LCCs use a decentralized Point-to-Point (P2P) network, which provides
greater routing flexibility by offering direct flights between a wider variety of city pairs.

The distinction is visually apparent in Figure 1, which contrasts the hub-centric network
of Air France-KLM with the diffuse, web-like structure of Ryanair. While Ryanair maintains
large operational bases at airports like London Stansted, these do not function as connecting
hubs for transfer passengers; their strategic role is to serve large origin-destination markets,
not to facilitate transfers, underscoring the airline’s strict adherence to the P2P model.?

Second, cost structures differ markedly. FSCs incur higher per-passenger and per-flight
costs, driven by higher legacy labour and fleet costs, operations at expensive hub airports,
lower fleet utilisation, and premium offerings like business class and meal services. According
to KPMG, the cost per available seat kilometre for LCCs (excluding fuel) is 20%-30% lower

3Ryanair operates de facto hubs at London Stansted and Dublin. However, these are primarily used as
operational bases for aircraft and do not function as international hubs in the FSC sense. Their significance
lies in serving large local markets rather than facilitating connecting traffic.
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https://www.statista.com/statistics/1094759/largest-airlines-in-europe-based-on-passengers/

Figure 1: Route Maps of Air France-KLM (left) and Ryanair (right) in Q2 2019

than for FSCs (KPMG), granting them a substantial pricing advantage.

Third, service levels and airport selection strategies diverge. LCCs ‘unbundle’ their
product, earning a significant portion of revenue from ancillary fees for services like baggage
handling and seat selection.* In contrast, FSCs traditionally offer a more inclusive fare.
This strategic bifurcation extends to airport choice, which is particularly notable in Europe’s
multi-airport metropolitan areas. FSCs typically operate from large international hubs, while
LCCs favour smaller, secondary airports. London provides the clearest example across its
six airports: Heathrow serves almost exclusively FSCs as the principal international hub;
Gatwick accommodates both; Stansted and Luton are major LCC bases; and the City and
Southend airports cater to specialised segments.® Although Heathrow is the most connected,
its severe capacity constraints and high airport charges make it economically unattractive
to the LCC business model.

Slot Constraints in European Airports: Europe has many of the world’s most
congested airports, with major hubs like London Heathrow operating at or near full capacity
for decades. Expanding this infrastructure is notoriously difficult, often blocked by regulatory
constraints, political opposition, and financial challenges. As a result, airline operations are
managed by a rigid system of “slots”—the right to use a runway for a specific takeoff or

landing. The allocation of these slots is critical, as Europe is home to nearly half of the

4While FSCs increasingly adopt similar pricing practices, they are still generally perceived as offering
higher service quality. See: Daily Telegraph.

®London City mainly serves business routes (e.g., London-Paris or London—Frankfurt), while Southend
is dominated by charter airlines.


https://assets.kpmg.com/content/dam/kpmg/ie/pdf/2023/01/ie-aviation-2030-jan-23.pdf
https://www.dailytelegraph.com.au/lifestyle/from-free-to-fee-airlines-are-phasing-out-complimentary-meals/news-story/912d31bf05f14365b5fca697a609e505.

world’s TATA Level-3 airports, where demand for flights consistently exceeds capacity.®

European aviation policymakers have long debated the allocation of scarce airport slots.
The current system, established in 1993, relies on “grandfathering,” allowing an airline to
retain its historical slots if it uses them at least 80% of the time in a season ((European
Union)). This “use it or lose it” rule gives established national carriers a powerful advantage,
letting them control valuable slot portfolios. The value of these slots has created perverse
incentives, such as running near-empty “ghost flights” during periods of low demand simply
to meet usage rules and avoid losing the asset.”

Table 2 shows that passengers flying with full-service carriers are far more likely to travel
through slot-controlled airports than their low-cost counterparts. In our model, we will
explore precisely how these airport characteristics shape airline revenues, costs, and network

expansion strategies for each carrier type.

Table 2: Share of routes including at least one slot-controlled airport

2016 2017 2018 2019
Low-cost 15.42% 14.30% 14.54% 15.08%
Full-service 32.91% 33.15% 32.48% 31.96%

Hubs, Airline, and Slot Constraints: The European airline industry has gone
through waves of consolidation over the past 35 years. Table 3 lists the current parent
airline groups, their associated operating carriers, and designated hub airports, using the
industry-standard IATA codes. Airlines are aggregated at the parent company level. For
instance, ‘IAG’ represents the International Airlines Group (IAG) which includes British
Airways (BA, the UK’s flag carrier), Iberia (Spain’s flag carrier), Aer Lingus (Ireland’s flag
carrier), and the low-cost subsidiary Vueling. TAG’s hubs include the hubs of its carriers:
London Heathrow (LHR), Madrid-Barajas (MAD) and Dublin (DUB). Carriers within the
same parent group typically coordinate operations through code-sharing and provision of
complementary routes. All major hub airports used by FSCs are slot-controlled airports; all
18 are designated as Level 3 congested under the IATA system.

Aircraft Utilisation: Aircraft utilisation directly limits an airline’s ability to adjust
flight frequencies. There are two important features of the 2019 market. First, European
carriers operated with high levels of fleet efficiency, meaning most aircraft were already near

full operational capacity, leaving little slack to increase total network frequency without

STATA classifies airports into three categories: Level-1 airports have no significant congestion; Level-2
airports may require coordination; Level-3 airports consistently face demand that exceeds available capacity.
This system is widely used to measure airport congestion.

"This phenomenon was widely reported during the pandemic. See: Forbes.
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Table 3: Full service carriers

Parent Subsidiary airlines Hubs

IAG British Airways, Iberia, Aer Lingus, Vueling | LHR, MAD, DUB, BCN, FCO
AF-KLM Air France, KLM, Transavia CDG, AMS

LH Lufthansa, Austria Airline FRA, MUC, ZRH

Swiss, Brussels Airline, Eurowings VIE, BRU

SAS Scandinavian Airlines CPH, ARN, OSL

AY Finnair HEL

A3 Aegean Airlines ATH

LO LOT Polish Airlines WAW

Note: Hub airports represent the central hubs for all airlines under the same parent company.

expanding fleets.® Second, the continent’s airlines were not undergoing significant fleet ex-
pansion during this period. Given the long lead times for aircraft orders—typically three to
five years—rapid capacity growth was not feasible, and no large-scale orders were pending
delivery. The high utilisation motivates a key feature of our modelling assumptions: to enter
a new route, an airline must reallocate an existing aircraft from another route within its

existing network.

2.2 Data

Our data comes from Sabre Market Intelligence (Sabre), a global distribution system that
provides travel reservation and pricing tools for many of Europe’s largest airlines, including
[IAG Group, Air France-KLM Group, Lufthansa Group, EasyJet, and Wizz Air. Because this
system is actively used by airlines for fare optimisation, it offers highly accurate, itinerary-
level pricing information. Our data contains information for 2016 to 2022. We focus our
analysis on the most recent pre-covid year, 2019.

The raw Sabre data are organised at the itinerary or route level, defined as a specific
airline’s service between an origin and destination airport. Each observation includes key
characteristics such as average airfare (price), flight frequency, travel time, and passenger
volume, aggregated to the quarterly frequency. We choose the top 100 airports by passenger
volume and make two key processing decisions. First, given that only 6% of European
passengers in our sample travel on connecting flights, we restrict our analysis to the direct
flight market. Second, because airlines typically operate return services with nearly identical
prices and frequencies, we aggregate directional itineraries into a non-directional route as in
Yuan and Barwick (2024) and Bontemps et al. (2023). Finally, we supplement the Sabre

data with: (1) metropolitan population data from Eurostat (European Union), which we use

8See the report from Eurocontrol


https://www.sabre.com/products/suites/pricing-and-revenue-optimisation/market-intelligence/
https://ec.europa.eu/eurostat/web/cities/database
https://www.eurocontrol.int/sites/default/files/2024-01/eurocontrol-comparison-atm-related-performance-us-europe.pdf

to construct our market size variable, (2) airport-to-airport surface distances obtained via
the Google Distance Matrix API.

Table 4 presents summary statistics. The industry is dominated by 14 parent airline
groups, with the six largest being the three primary FSCs (IAG, Air France-KLM, and
Lufthansa Group) and the three primary LLCs (Ryanair, EasyJet, and Wizz Air). These
six account for 87% of all intra-European passenger traffic. We observer 11,292 itineraries
or routes in total with 4,039 being monopoly routes and the remaining majority featuring
multi-firm competition. The important role of hubs is also evident, with nearly 22% of all
itineraries involving a flight to or from a designated hub airport. A typical route in our
sample has an average fare of approximately $86, a frequency of roughly one flight per day,
and a travel distance of about 1,400 kilometres (a flight duration of just under two hours).

In total, the routes in our 2019 sample served over 350 million passengers.

Table 4: Summary statistics

(a) Sizes: (c) Demand and cost Mean St.Dev
# firms 14 fare (100 USD) 0.86 0.57
# itineraries 11292 frequency (daily) 0.95 1.74
# markets 7025 distance (1,000 km) 1.38 0.73
# hub itineraries 2432 market size (1 million) 2.82 2.01
# monopoly itineraries 4039 product shares 1.48% 2.40%
# city pairs 2003
# passengers (1 million) 354
# quarters 4
(b) Market shares (d) Market level statistics Mean St.Dev
BA 0.16 # products 2.07 1.11
AF 0.09
LH 0.12
FR (Ryanair, LLC) 0.25
U2 (Easyjet, LLC) 0.21
W6 (Wizz Air, LLC) 0.04
Other 0.13

Hub itineraries are defined as those where at least one of the origin or destination airports is classified
as a hub airport. Market shares in panel (b) exclude outside options, such as individuals choosing not
to travel or opting for alternative modes of transportation. Fares are calculated as the average fare
across all tickets for a specific itinerary.

Table 5 reports key summary statistics for each airline’s hub cities and their charac-
teristics. While LCCs do not operate formal hubs in the traditional sense, we identify
the two most connected cities in each LCC’s network for comparative purposes. Panels
(a) and (b) reveal that FSCs maintain far greater connectivity from their hubs and oper-

ate at significantly higher frequencies, particularly on dense business routes. For instance,



Lufthansa Group (LH) operates approximately 40 daily flights between its hubs in Munich
and Diisseldorf, while IAG operates 35 between Madrid and Barcelona. This contrast is
starkly illustrated in Panels (c¢) and (d), which measure network concentration. Nearly 70%
of Air France-KLM’s entire route network touches its hubs in Paris or Amsterdam, a clear
empirical signature of a Hub-and-Spoke model. In contrast, LCCs exhibit much lower con-
centration levels, with their routes more evenly distributed across a wide range of cities,

reflecting their decentralised Point-to-Point strategy.”

Table 5: Hub airport summary statistics

Airlines Top Hub Hub Index Freq Second Hub Hub Index Freq
(a) Full service:
TIAG Madrid 60 2.3 London 56 2.6
AF-KLM Amsterdam 73 2.1 Paris 52 1.9
LH Frankfurt 66 3.0 Munich 64 4.0
(b) Low Cost:
FR Dublin 61 0.9 London 56 1.2
U2 London 61 1.8 Geneva 51 0.7
W6 Budapest 37 0.4 Bucharest 27 0.4
Airlines Top Hub  Concentration Second Hub  Concentration
(c) Full service:
IAG Madrid 14% London 25%
AF-KLM Amsterdam 36% Paris 37%
LH Frankfurt 19% Munich 18%
(d) Low Cost:
FR Dublin 7% London ™%
U2 London 12% Geneva 9%
W6 Budapest 18% Bucharest 14%

Note: The table presents key summary statistics for each airline’s hub cities. The Hub Index represents
the total number of cities served by the hub, indicating its level of connectivity. Freq refers to the
average frequency of all itineraries to/from a specific hub. Concentration refers to the proportion of
itineraries to/from this hub city relative to the total number of itineraries.

Table 6 shows that around 43% of all markets are served by more than one airline
group. It also shows that the average fare of monopoly markets is higher than that of more
competitive markets. Also, the standard deviation of fares in monopoly markets is also
higher. Table 7 shows that FSCs operate, on average, nearly two times as many routes
involving a hub as LCCs. Table 8 presents the average quarterly change in the number of
routes per parent airline. FSCs alter their portfolio of hub-related routes in response to

seasonal demand more than LCCs, particularly during the peak summer quarter (Q2).

9Wizz Air shows a relatively high concentration rate, primarily because it operated a much smaller
network in 2019 compared to the other airlines. This is also reflected in its smaller market share. Since then,
Wizz Air has expanded significantly, and its hub concentration is now closer to that of Ryanair and EasyJet.



Table 6: Market Competition and Fare Statistics by Number of Parents

Number of Parents 1 2 3 4 5
Frequency 15,315 8,290 2,490 561 49
Percentage 57.35% 31.04% 9.32% 2.10% 0.18%
Average Fare 1.163 1.073  1.038 1.117 1.113
Std. Dev 0.578 0.456  0.365 0.374 0.426

Total Markets: 26,705; Mean Parents: 1.57; Median: 1.00

Table 7: Average Number of Routes with at Least One Hub per Parent Airline

2016 2017 2018 2019
Low-cost 201 214 233 239
Full-service 383 384 392 389

Table 8: Average Quarterly Change in Routes per Parent by Quarter

Ql Q2 Q3 Q4

Low-cost —-139 440 108 —-279
All Routes Full-service —-99 26.3 83 -—=21.7
At least one Hub Low-cost —-1.3 54 20 —4.0

Full-service —-5.0 120 34 —-94

Figure 2 shows the passenger share, revenue share, and frequency share for each parent
airline. While LCCs like Ryanair (FR) and EasyJet (U2) have the largest passenger shares,
FSCs such as IAG (BA) and Lufthansa Group (LH) have the highest revenue and frequency

shares, reflecting their focus on premium services and dense schedules.

Passenger Share
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mFR =yU2 sBA = |H = AF = W6 = SK " LS = DY »~ UX = AY = A3 = LO © FI

Figure 2: Market Share Analysis

Figure 3 shows a network analysis. The network size is the total number of airports served
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by each airline. A larger network size implies a broader set of feasible route alternatives.
The three largest full-service airlines (AF, BA, LH) and the three largest low-cost carriers
(FR, U2, W6) exhibit the largest network sizes. The network density is defined as the ratio
of observed routes to total possible routes. We also report the number of observed routes
against the number of possible routes. Full-service carriers show lower connectivity across
their served cities, reflecting their hub-and-spoke business model. Low-cost carriers have
higher network density percentages. The network efficiency, defined as the average number
of unique routes per airport, measures how intensively each served airport is used. Low-cost
carriers again score higher on this metric: for example, Ryanair (FR) operates on average
more than ten unique routes per airport it serves, whereas Air France (AF) averages fewer
than three.

Network Size Network Density (%) Routes vs Possible Routes Network Efficiency
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Figure 3: Network Analysis

3 Model

This section introduces a static two-stage model of airlines’ entry, flight frequency, and
pricing decisions. In the first stage, airlines simultaneously decide routes to enter and flight
frequency, thereby shaping the overall flight network. In the second stage, airlines compete

on prices to attract customers.

0

Let ¢ € G be an airline group in the intra-European'® aviation industry, where airlines

are defined at the parent group level. A market m € M is defined by a non-directional

1

city-pair ¢,d € C where C is the set of cities.!! We restrict our analysis to direct flights

10Flights to and from Armenia, Azerbaijan, Georgia, Belarus, Moldova, Serbia, Ukraine, Russia, and
Turkey are excluded due to their non-compliance with current European aviation policy.

UThe definition of a market as a city-pair follows Berry (1992); Aguirregabiria and Ho (2012); Yuan and
Barwick (2024).
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only, which comprise around 94% of air travel in Europe. A product j is defined to be an
airline g offering flights between airports a,b € A where A is the set of airports. That is,
each j corresponds to a unique (g, a,b). Furthermore, let j = 0 denote the outside option of
not flying. Let [J, be the set of products chosen by airline g in stage one of the two stage
game. In equilibrium, the set of products available in market m is the outside option j = 0
plus J,, = {U 5 jgm} That is, it is the outside option plus the set of products chosen by
airlines in stage one. We omit the time subscript ¢ for simplicity, unless otherwise specified
and denote the number of products in market m with J,, = | T |.

Airline choices and consideration set: Each airline’s choices include route network
N, flight frequencies F,, and prices P, in all routes. The route network Ny is represented by
a vector where element N, = 1 if airline g enters the route between airport a and airport
b, and N, 4, = 0 otherwise. We assume that in the short run, an airline can only operate
flights in cities in which we observe it operating in Berry (1992). We also assume that if
an airline is not operating in a slot controlled airport in 2019, it cannot enter that airport
in the short run. Furthermore, an airline can only enter its hub airport in a city unless it
is already operating in both its hub and a secondary airport. Finally, an airline can only
enter a market that is served by at least one airline. These constraints capture the fact that
expanding services in directions outside the support of the observed route network entails
greater costs. We assume these greater costs are sufficiently large that such entry is not
feasible in our estimation nor in our counterfactual simulation. Let r be a non-directional

route defined by a pair of airports (a,b) and R, be the set of all feasible routes for airline g.

3.1 Second Stage: Pricing

In the second stage, given route networks and flight frequencies, airlines compete in
prices. They simultaneously set prices for all products in each market to maximise profits
under complete information.

Demand: The demand model is a discrete-choice model following Berry and Jia (2010)
and Yuan and Barwick (2024). For a product j in market m, the utility of consumer i is
given by:

0o —Pjm + Tjm B + Eim + Vim(A) + Aeijm it j € T,
T v ) + Acijm itfj=0

where x;,, is a vector of product characteristics, p;,, is the product price, ;,, is the unob-

served (to researchers) product characteristic, v, () is the ¢

‘nested-logit” shock, €, is the
i.i.d extreme value type I utility shock, a is the price coefficient, § is the vector of utility

parameters, and A € (0,1) is the nesting parameter. Let 0; = (o, 3, A) denote the vector of
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demand parameters.

The product characteristics xj,, include distance, distance squared, airline, major hub
airport, city, seasonal fixed effects, and the logarithm of flight frequency. Distance terms
affect substitution to the outside option. Higher frequency offers consumers more travel
options and greater flexibility. Third, we include airline-airport fixed effects for selected
major hub airports and their respective national carriers. This fixed effect is important
because major European hubs serve not only intra-European passengers but also a substantial
volume of intercontinental transfer passengers who fall outside the scope of our analysis.!?
We include this additional fixed effect to control for the influence of intercontinental layover
traffic on observed demand patterns at major hub airports.

The model implies that the market share for product 5 in market m is:

o (Do Eon: ) — Ot P 5 — P + G/ V)
e } + (Zkejm exp((TrmfB — APrm + §km)//\))AJ
Probabili;; of flying
exp((ZjmB — aPjm + &im) /)
;keJm exp((ZrmB — aPrm + &) /A)

~
Conditional probability of choosing j

where Pm = (pkm ke jm)7 Xm = (ka ke jm)a and gm = (é.km ke jm)
Supply: Airlines simultaneously set prices in each market to maximise profits:

> ) (jm — MCim) - Sjm (P X, €mi a) - MS,, Vg

where MCj,,, is the marginal cost of product j in market m and MS,, is the market size
defined as the geometric mean of the populations of the two endpoint cities. Let O,, be the
ownership matrix for market m where element (j, k) equals 1 if the same firm owns both
products j and k. The Bertrand-Nash F.0O.C.s for profit maximisation yield:
ds
Mcm: m + Om®_m _1Sm
P+ ( apm)
where MC,, is a J,,, X 1 vector of marginal costs for all products in market m, and ® denotes

the element-wise product.

128pecifically, international transfer passengers travelling on a single itinerary with a short layover are
not captured in our dataset and are excluded from the demand estimation. However, some travellers choose
to extend their stopover to visit the hub city itself. In such cases, the intra-European leg of the journey is
included in our demand sample.
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The marginal cost function is specified as:
Mij = wjmes + w]‘m

where w;,, is a vector of observable cost shifters, wj,, is an unobserved cost shock, and ¢, is
the vector of marginal cost parameters. We include various product characteristics in wjyn,,
such as distance, distance squared, log of flight frequency, airline, city, airport, and seasonal
fixed effects.

3.2 First Stage: Entry and Frequency

In the first stage, airlines simultaneously determine their route networks and choose
flight frequencies. Airlines incur fixed costs for each active route. For airline g, offering

flight network N, and flight frequency F,, we assume that the total fixed cost is:

FCy(Ny, Fy, kg5 05c) = Z Ngj - (2 (fo5)05c + Fgj)

jER,

where z;(f;) is a vector of observable route characteristics including market size and fre-
quency times distance, x; is an unobserved route specific fixed cost shock, and 0y, is a vector
of fixed cost parameters.k, is the vector of all route-specific shocks for airline g. Fuel costs
are a fixed cost of operating a route and are proportional to frequency times distance.

We assume that, firms choose their route networks in stage on before the second stage
shocks, &, and w;y, are realised.’® Let (N, F, X, W) be the networks, frequencies, product
characteristics, and marginal cost shocks of all airlines in all markets. Then, for each airline

g, expected second stage profits can be written:
oy (N, F, X, W;6,,6,) =

Eﬁ,w Z Z (p]m - MC]m) : Sjm(pma Xm €m7 ed) : MSm

meM jEng

In this expression, p,, is the equilibrium price vector that arises in the stage two in market
m after the demand and cost shocks (&,,,w,,) are realised. The expectation is taken over
all unobserved demand and cost shocks in all markets. We assume that the demand and
cost shocks are independent across markets and products and are identically distributed for

each airline. Furthermore, we assume airlines know the distributions of these shocks when

13Prior work, including Aguirregabiria and Ho (2012), Sweeting (2013), Eizenberg (2014), and Yuan and
Barwick (2024), make an analogous assumption.
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making entry and frequency decisions.
We assume that airlines have complete information about all competitors entry cost
shocks and simultaneously choose route networks and flight frequencies (N, Fy) to maximise

expected profits net of fixed costs:

HQg(N7 F7 X7 WJ eda ec) - FCQ<N97 F97 Kg; 6fc)

3.3 Equilibrium

The equilibrium of this two-stage game is a subgame perfect pure strategy Nash equi-
librium. Airlines solve the second-stage pricing game given the route networks and flight
frequencies chosen in the first stage. The equilibrium consists of networks, frequencies, and
prices: {N* F* P*}. The existence and uniqueness of equilibrium in the second-stage pric-
ing game are established by Nocke and Schutz (2018) for multi-product nested logit models.
However, equilibrium in the first-stage game is not guaranteed to exist, as noted by Bon-
temps et al. (2023) and Yuan and Barwick (2024). We assume the existence of a first-stage

equilibrium, but we do not assume the uniqueness and allow for multiple equilibria.

4 Identification and Estimation Strategies

The identification of demand and cost parameters is straightforward. The identification
of the nesting parameter A follows Berry and Jia (2010). This section focuses on the identi-
fication and estimation of the linear fixed-cost parameters 6y, and we omit the demand and

marginal cost parameters for brevity.

4.1 Construction of Moment Inequalities

To ease notation, we suppress dependence on (X, W,0.,0,) and on the competitors’
strategies and unobserved fixed cost shocks.

Let II;,(INg, Fy, kg5 07c) = yy(N,, Fy) — FCy(Ny, Fy, ky;0.) denote airline g’s profit
conditional on its own actions, its competitors actions, and all other state variables. As-
suming observed choices (N7, F}) maximise profits, for any alternative actions (Nj, Fg), we

have:
ng(AZ, f;, Kg; 9fc) — ng(NZ, FZ, Kg; ch) = Ang(N;, F;, NZ, Fg; ch) + Ag(mg) >0

where Ang(N;, F,, Ny, Fy; 6y.) is the difference in profit unrelated to fixed cost shocks and
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Af(kg) is the difference in fixed cost shocks between the observed and alternative networks.

Under the linear fixed cost specification, we have:

ATL (NG, Fy NG F 0p0) = g (N3 Fy) — Ty (NG, F9) — Y (25 ()N — 20 (F)Ng) ;e

jER,

where z7(f7) and z§(f{) denote the observable route characteristics under the optimal and
alternative stage one choices.

We use a vector of non-negative instruments Y that are correlated with changes in profits
but uncorrelated with the fixed cost shocks difference to construct the moment inequalities.

We have K instruments available and for each instrument Y}:

E[Yk’ : Ang(N; F;» NZ, ng efc)] + ]ED/k ’ AZ(K’!J)] <0
N——————

=0

Then we construct sample moment inequalities to estimate the fixed cost coefficients 0,
following Pakes et al. (2015):

1
— Y Vi AL (Np,F; N2 Foi0p) <0 Vh=1,..K

a
* ok a Fa
Nz . F;.Ng Fg

where N is the number of feasible alternative route networks for airline g.

4.2 Estimation Strategy

Exploring all possible alternative route networks is computationally infeasible because the
number of (N¢, F7) combinations grows exponentially with the number of routes in airline
¢’s network and the number of feasible frequencies for each route. To address this challenge,
we consider only a subset of alternative route networks and frequencies.

Alternative Route Network and Frequency: Following Yuan and Barwick (2024)
and Bontemps et al. (2023), we consider only single-market deviations. Specifically, if an
airline is active in a market, we consider two alternative scenarios: (1) exiting the market
while keeping all other routes and frequencies unchanged; and (2) redeploying the same
frequency to an alternative route in which the airline is not currently active, while keeping
all other routes and frequencies unchanged.

Moment Inequalities under Single-Market Deviations: As we focus on single-
market deviations, and only consider direct flights, the demand and pricing conditions in
all other markets remain unchanged. Recall that IT;, (N7, Fy) = Iy (N7, F7) — FC, (N7, F)

is the sum of expected profits net of fixed costs for all routes j* in the network N7. Let
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(m1g(5%), m2g(5*), fc(j*)) be the components of those profits and costs accruing from route j*.

Then the inequalities arising from single-market deviations can be written:

ATig(5%, 5% Ofe) =Tag(3%) — w2 (%) — (Zg** - Z}la)&fc — Kgjr + Kgja 20 Vj© € N;vja €R,
(5", 0) =mig(j*,0) — kj» 20 V)" € Ny

where the second inequality considers deviations that remove planes from service.

Identification: The identification of 6y, relies on the differences in attributes between
observed and alternative routes. Any attribute that does not vary across routes—such as a
constant term or a full-service airline dummy—cannot be identified through these inequali-
ties. To simulate the counterfactual, we will impose a distributional assumption on the fixed
cost shocks.

Table 9 presents the attributes and expected profits of observed and alternative routes by
airline. For the Frequency x Distance measure, full-service airlines (FSCs) consistently oper-
ate longer routes than low-cost carriers (LCCs) in both observed and alternative networks.
This pattern reflects the distinct business models of the two groups. Hub-and-spoke networks
naturally link longer city-pairs to one or more hubs, whereas point-to-point strategies favour
shorter sectors to maximise daily aircraft utilisation—a hallmark of the European low-cost
model. !4

The percentage change between observed and alternative networks shows that FSCs’
alternative routes have higher FrequencyxDistance values than their current operations.
Because alternative frequencies are the same as the observed frequency, the increase comes
from longer average distances. Among LCCs, the picture is more heterogeneous. Fasy-
Jet, often described as a “hybrid” or semi-full-service carrier, displays a pattern similar to
the FSCs, consistent with its strategy of operating both dense leisure city-pairs and key
primary airports. Ryanair’s Frequencyx Distance shows almost no difference between ob-
served and alternative routes. This is intuitive because Ryanair already operates the most
extensive network in FEurope, serving nearly every major city-pair of economic relevance,
so potential alternatives offer similar distances and therefore limited scope for reallocation.
Wizz Air, headquartered in Budapest and heavily focused on Eastern Europe, shows a pos-
itive difference (alternative routes shorter on average). Many of its feasible redeployments
link medium-sized cities in Central and Eastern Europe, because the largest Eastern Euro-
pean markets are already present in its current network. Several regional carriers, such as

Finnair and Icelandair, exhibit very high Frequency xDistance values, reflecting the remote

HMEUROCONTROL’s Data Snapshots document the higher average stage length of full-service carriers
and the shorter, more numerous sectors flown by European LCCs.
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geographic position of their hubs (Helsinki and Reykjavik) and the long sectors required to
connect them to the rest of Europe.

FSCs also tend to serve markets with larger populations than LCCs. The difference terms
show that FSCs’ alternative routes generally connect smaller endpoint populations than their
observed routes. This is natural because most large European city-pairs are already covered
in their current networks, so remaining alternatives involve thinner markets. In contrast, all
LCCs have alternative routes with larger market size than the observed routes. This reflects
their tactical avoidance of certain large markets in the observed network—often to avoid
higher landing fees, congestion charges, or labour costs at primary airports—and their focus
on secondary airports around major metropolitan areas.'®

Expected variable profits from second-stage price competition also differ by business
model. FSCs earn higher expected profits than LCCs on both observed and alternative
routes, reflecting their ability to command price premia through brand reputation, business-
class demand, and hub connectivity. The differences between observed and alternative profits
are larger for FSCs than for LCCs, a result of strong hub effects. Most of the profitable
hub routes for FSCs are already included in their current networks; alternative routes are
therefore more likely to be non-hub markets where network economies are weaker and price
competition is stronger. This large gap supports our decision to allow hub and non-hub
routes within the same full-service airline to follow different distributions of fixed-cost shocks.
Among LCCs, profit differences are modest, consistent with already optimised point-to-point
schedules and intense fare competition on thick leisure markets. All regional carriers show
higher expected profits for alternative routes. Their continued operation of current networks
is likely sustained by substantial subsidies and public-service obligations, which reduce the
private incentive to redeploy capacity even when profitable alternatives exist.!

Large full-service and low-cost carriers have far more observations than regional airlines.
On the one hand, this richer data generates greater variation for the moment-inequality
estimation. On the other hand, it allows us to estimate the fixed-cost distribution separately
for each of the six largest European airlines—a level of flexibility that is rarely achievable in

the existing literature.

15For example, Ryanair often uses airports such as Charleroi for Brussels and Beauvais for Paris, allowing
it to tap large catchment areas while avoiding the high costs of main hubs.

16Regional carriers in Europe frequently receive national or EU subsidies, particularly on thin peripheral
routes; see European Commission reports on Public Service Obligation (PSO) routes. It is worth noting,
however, that large legacy carriers such as Air France also receive state support, especially during crises.
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5 Estimation Results

This section presents the estimation results for the demand, marginal cost, and fixed cost

components of our model.

5.1 Demand Estimation

Table 10 reports the demand-estimation results for the core parameters and selected fixed
effects. We use two types of instruments: (i) the number of products offered in each market,
and (ii) the average fare of routes with similar distances!” The first-stage F-statistic for price
is 172.55, and the heteroskedasticity-robust F-statistic is 91.16, indicating strong instrument

relevance.

Table 10: Demand Estimation Results: Core Parameters and Selected Fixed Effects

Variable Coefficient Variable Coefficient

Core Demand Parameters Airport FE

Price ($100) —5.426 (0.515)  Amsterdam Schiphol —0.580 (0.082)

Log Frequency 1.217  (0.037)  Frankfurt Airport —0.621 (0.105)

Distance (1,000 km)  0.325 (0.163) Madrid-Barajas —1.554 (0.118)

Distance? 0.145 (0.033) Barcelona-El Prat —1.701 (0.103)

Nesting Parameter 0.885 (0.054)  Vienna International —0.742  (0.058)

Q2 0.533 (0.084)

Q3 0.181 (0.065)  City FE

Q4 —0.018 (0.063) London/Southend/Cambridge —1.100 (0.160)
Paris/Pontoise —1.309 (0.145)

Airline FE Amsterdam/Rotterdam —0.580 (0.082)

British Airways 3.449 (0.401) Dusseldorf/Dortmund/Cologne —0.608 (0.194)

Air France 1.663 (0.236) Rome —1.412 (0.107)

Lufthansa 3.585 (0.452)  Madrid —1.554  (0.118)

Ryanair —0.094 (0.053)

Wizz Air —0.263 (0.089) Airline-Airport FE

Air France at Paris CDG 1.987 (
Air France at Amsterdam Schiphol 1.951 (
British Airways at London Heathrow  0.633 (0.417
Lufthansa at Frankfurt Airport —0.037 (

Notes: Standard errors in parentheses.

The estimated nesting parameter is 0.885 and is significant. In the nested-logit frame-
work, this parameter captures the correlation in unobserved utility among products within
the same nest. Here all airline itineraries form one nest and the outside option forms the
other. A value close to one indicates strong substitution among airline products and sub-
stantial correlation in their unobserved components (for example, common shocks such as

weather or macro-demand factors).

17TRoutes with distances between 99% and 101% of the current route.
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We convert the estimated coefficients into willingness-to-pay (WTP) measures.’® On
average, consumers are willing to pay about $22.4 for a one-unit increase in the log of
daily flight frequency, reflecting the high value passengers place on schedule convenience.
The linear and quadratic distance terms are both positive and significant at the 5% level.

Evaluated at the sample mean distance of roughly 1,000 km, consumers marginal WTP is

0.325+2x0.145% 1
|—5.426]

quarter (Q1), consumers value spring (Q2) flights about $9.8 more and summer (Q3) flights

x 100 =~ $8.6. Seasonal preferences are also evident. Relative to the baseline

about $3.3 more, while winter (Q4) shows no significant difference. Carrier and hub effects
are also obvious. Full-service airlines receive sizable premia: consumers are willing to pay
roughly $32.7 more to fly with the Air France-KLM Group than with Ryanair on the same
route. Air France-KLM also enjoys strong hub advantages: itineraries involving CDG or
AMS are valued about $36 higher than competing services on identical markets. Overall,
the WTP estimates highlight the key drivers of consumer choice in European short-haul
aviation: a high value on frequency, a non-linear premium for longer distances, pronounced
seasonal patterns, and significant brand and hub advantages.

Table 11 reports the summary statistics for the own- and cross-price elasticities implied
by the estimated demand parameters. The average own-price elasticity is -4.49, which is close
to the estimate reported in Bontemps et al. (2023) (-3.78) and notably more elastic than
the values from the two-consumer-type model in Berry and Jia (2010). Elasticities of this
magnitude are consistent with evidence from the airline industry, where empirical studies of
European short-haul markets typically find own-price elasticities ranging between -3 and -5
for leisure-dominated routes. Such values indicate that passengers are quite sensitive to fare
changes: a 1% increase in price leads, on average, to roughly a 4.5% decrease in demand.
This high responsiveness reflects the availability of close substitutes—both between airlines
on the same city pair and across alternative modes of transport. The cross-price elasticities,
while smaller in absolute value, confirm significant substitution across carriers operating in
the same market, reinforcing the interpretation of a highly competitive environment.

European air travelers are generally more price sensitive, as documented in both empirical
studies and industry reports (see for example, IATA Report.) This heightened sensitivity
reflects the greater presence of low-cost carriers, denser and more competitive point-to-point
networks, and, on average, lower income levels across Europe. In contrast, the estimated
cross-price elasticities are mostly positive, consistent with standard substitution patterns

among competing airline products and confirming that passengers readily switch to rival

IBWTP is calculated as the ratio of the coefficient of interest to the absolute value of the price coefficient.
It measures how much more consumers are willing to pay for a one-unit change in a product characteristic,
holding utility constant.
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carriers when relative fares change.

Table 11: Summary Statistics for Price Elasticities

5th Percentile 95th Percentile Mean Variance

Own-Price Elasticity —-9.96 —1.03 —4.49 9.21
Cross-Price Elasticity 0.03 1.64 0.68 0.32

5.2 Marginal Cost Estimation

Table 12 reports the marginal cost estimates and summary statistics for markup and
marginal costs. The average marginal cost per passenger is $67.6, roughly 30% lower than
comparable U.S. estimates such as those in Yuan and Barwick (2024), who report mean
marginal costs around $95 per passenger for similar short-haul markets. This difference
is in line with broad industry evidence. FEuropean carriers consistently report lower unit
operating costs than their U.S. counterparts. For example, IATA cost benchmarking shows
that European short-haul airlines have cost per available seat kilometre (CASK) roughly 20-
35% below that of major U.S. legacy carriers over the past decade, largely because of a higher
share of low-cost carriers, denser route networks, and more efficient aircraft utilisation.!?
Low-cost carriers such as Ryanair and Wizz Air routinely report CASK levels less than half
of those of U.S. full-service carriers, and their presence drives average European unit costs
downward even for network airlines.

The average route distance in our sample is 1,407 kilometres (about 875 miles), which
implies a unit cost of roughly $0.05 per kilometre or $0.08 per mile. These figures closely
match international benchmarks: Berry and Jia (2010) report about $0.06 per mile for U.S.
domestic flights, while Yuan and Barwick (2024) find around $0.08 per mile. IATA cost data
for European short-haul operations similarly cluster in the $0.05-$0.09 per mile range once
adjusted for fuel prices and exchange rates, reinforcing the plausibility of our estimates.

The implied markup is also sizeable. The average markup is $17.9, corresponding to an
average percentage markup of 35.2% and an average per-route profit of roughly $0.56 million.
These figures are broadly consistent with European airline financial statements and with the
25-35% margin estimates commonly reported for competitive U.S. domestic routes. Higher
airport charges and slot constraints in Europe may also sustain slightly higher margins even

in markets served by multiple carriers.

19Gee TATA Annual Review and InterVISTAS (2015) Estimating Air Travel Demand Elasticities, which
report CASK figures for major world regions.
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Table 12: Marginal Cost Estimation Results: Core Parameters and Selected Fixed Effects

Variable Coefficient Variable Coeflicient
Core Cost Parameters Airport FE
Distance (1,000 km) 0.098 (0.020)  Frankfurt Airport 0.099  (0.011)
Distance? 0.024 (0.006) Paris CDG 0.217  (0.026)
Frequency 0.064 (0.005) London Heathrow 0.175 (0.027)
Q2 0.090 (0.010)  Amsterdam Schiphol 0.117 (0.010)
Q3 0.021  (0.010)
Q4 ~0.006 (0.010)  City FE

London/Southend/Cambridge 0.150 (0.017)
Airline FE Paris/Pontoise 0.041 (0.022)
Air France 0.608 (0.019) Amsterdam/Rotterdam (Randstad)  0.117 (0.01)
British Airways 0.744 (0.016)  Frankfurt/Mannheim 0.099 (0.011)
Lufthansa 0.831 (0.018)  Dusseldorf/Dortmund/Cologne 0.243  (0.022)
Ryanair 0.020 (0.013)
Wizz Air —0.044  (0.022)
Summary Statistics
Average Marginal Cost $67.6
Average Markup $17.9
Average Percentage Markup  35.2%
Average Profit $560,586

Notes: Standard errors in parentheses.

The cost coefficients reveal clear economic patterns. Both distance and distance? are

positive and significant, implying that marginal cost rises at an increasing rate with route
length. This convexity reflects the growing cost of fuel, crew time, and maintenance over
longer legs and is consistent with engineering cost studies for narrow-body fleets. The coef-
ficient on frequency is also positive, in contrast to many U.S. studies where frequency often
lowers marginal cost by spreading fixed expenses across more departures. In Europe, two
factors likely drive this difference. First, European carriers operate with consistently high
load factors—often above 85% —leaving little unused capacity to absorb additional flights.
Second, high-frequency services are typically short-haul “city-hopper” routes (e.g., London-
Amsterdam or Madrid-Barcelona) where airlines deploy smaller regional jets with higher
per-seat operating costs.?’

As expected, full-service carriers face higher marginal costs than low-cost airlines, and
operating from large hub airports (e.g., FRA, CDG, LHR) is also associated with higher
costs. These patterns mirror industry evidence on cost heterogeneity: full-service airlines
incur higher labour and service costs, while congested hubs impose higher landing fees

and turnaround expenses. The recovered marginal-cost distribution, together with realis-

20For example, British Airways frequently operates Embraer 190s from London City Airport to destina-
tions such as Dublin and Amsterdam, which raises per-passenger marginal costs relative to larger narrow-
body aircraft.
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tic markups and distance-cost relationships, supports the internal consistency of our model
and aligns well with both academic estimates and industry cost benchmarks for European

short-haul aviation.

5.3 Linear Fixed Cost Estimation

Table 13 reports the fixed cost estimation results. The instrument Y} includes dummy
variables indicating whether a market’s exogenous characteristic (e.g., size or population)
falls within the k-th evenly-spaced cell. Fewer instruments lead to a wider estimate set.
However, overloading the number of instruments can result in an empty estimate set. We
increase the number of instruments until an empty set is reached. Then, we report the most

precise estimate set.

Table 13: Entry Cost Estimation (in $100s)

IV Count Frequency X Distance  Market Size
Diff. Ineq. Obs. Ineq. Lower Upper Lower Upper
10 770 1,743 445 834
20 20 770 1,657 445 834
30 770 1,657 445 834
10 1,086 1,417 433 654
30 20 1,086 1,417 433 654
30 1,086 1,387 433 654
10 Empty Set Empty Set
40 20 Empty Set Empty Set
30 Empty Set Empty Set

Notes: Each coefficient is set-identified using moment inequalities. “Diff. Ineq.” refers to difference-
based moment inequalities requiring the observed route to have the highest expected profit among
alternatives. “Obs. Ineq.” refers to moment inequalities requiring observed routes to have non-negative
profits. Both sets use Market Size and Distance as instruments, with counts shown in the first two
columns. Frequency x Distance measured in daily flights x thousands of kilometers. Market size is the
geometric mean of endpoint populations in millions.

The estimation results show that, at the sample averages (Distance = 1,350 km; Market
size = 2.896 million), the implied per-flight linear component of the fixed cost (distance term

+ market-size term) evaluates to the midpoint value?* of approximately $3,602.89.

2lComputation (units: USD per flight; coefficients reported in the table are in $100s):

x 100 =90 x 1.350 = 1236.5 x 100 <+ 90 x 1.350 ~ 1,854.80,

1086 + 1387
Distance part = %

(433 + 654)
2

Total (Distance + Market) ~ 1,854.80 4 1,748.09 ~ $3,602.89.

Market size part = x 100 + 90 x 2.896 = 543.5 x 100 + 90 x 2.896 ~ 1,748.09,
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We clarify the economic interpretation of the $3.6k fixed-cost component through three
key considerations, contextualised within European airline industry benchmarks.

First, the $3.6k figure is not the total “per-flight” operating cost reported in airline finan-
cial statements. Instead, it represents the specific component of fixed costs that scales lin-
early with distance and market size within our econometric specification. Industry-standard
cost metrics typically reported on a per-flight basis—such as fuel allocated by available seat-
kilometres (ASK), variable handling fees, or aircraft turnaround costs—are captured both
within our marginal-cost and fixed cost estimates.

Second, industry benchmarking employs standardised metrics such as CASK (cost per
available seat-kilometre). European carriers exhibit substantial variation: ultra-low-cost
carriers report CASK values of 3.2-4.2 US cents, while full-service carriers exceed 10 US cents
(CAPA, 2025; Wizz Air H1 FY24). Since CASK declines systematically with stage length,
converting to per-flight equivalents requires aircraft-specific adjustments. For narrowbody
aircraft typical of European short-haul operations, industry sources report operating costs
of $2,900-$3,200 per block hour for A320/B737 aircraft (OPShots, 2015; Simple Flying,
2024), suggesting a 1.5-hour flight at 1,300km incurs approximately $4,350-$4,800 in total
costs. Within this context, our $3.6k estimate represents a reasonable fixed-cost component,
accounting for roughly 75-80% of total per-flight costs.

Third, our fixed cost shock does not have mean zero, which implies that a portion of
the true per-flight fixed cost could be partially absorbed into the intercept term. Specifi-
cally, total per-flight fixed cost comprises three components: (i) the linear term computed
here ($3.6k), (ii) the intercept (mean of the fixed cost shock), and (iii) the route-specific
idiosyncratic shock. Therefore, actual per-flight fixed costs (linear component + intercept
+ shock) will exceed $3.6k in many cases. Industry evidence confirms substantial variation
in total costs: European low-cost carriers report per-passenger costs ranging from €40 for
Ryanair to €79 for easyJet (excluding fuel), while legacy carriers like IAG and Lufthansa
operate at €159-164 per passenger (The Flight Club, 2025). With typical load factors of 85-
90% on 150-180 seat aircraft, this translates to per-flight costs varying from approximately
$5,100 to $25,000 across different business models (EUROCONTROL, 2024), supporting our
framework where fixed costs include both the linear component and additional stochastic el-

ements.
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6 Counterfactual Experiment on Carbon Policy

Carbon taxation has emerged as a pivotal policy instrument in the European aviation
industry, with significant implications for airline operational costs and route economics. The
current regulatory framework centres on the EU Emissions Trading System (EU ETS), which
has experienced substantial price volatility and structural reforms in recent years. Accord-
ing to the International Emissions Trading Association, the average EU ETS carbon price
is expected to rise from €84.4 per tonne during 2022-2025 to almost €100 per tonne during
2026-2030 (Statista). Critically, the system’s application to aviation has been significantly
strengthened, with 25% fewer free allowances allocated to aircraft operators in 2024, and
complete removal of free allocation scheduled for 2026 (European Commission). This reg-
ulatory tightening ensures that airlines will face substantially higher carbon costs in the
immediate future.

International organisations project even more dramatic carbon price escalations over the
coming decades. Advanced modelling by Enerdata indicates that EU ETS prices will pro-
gressively increase after 2030, reaching around €130/tCO2 in 2040, before rapidly escalating
to exceed €500/tCO2 by 2044 (Enerdata). These projections, spanning from approximately
$100 to $500 per tonne over the next two decades, translate to substantial operational cost
increases for airlines. For typical narrow-body aircraft operating intra-European routes,
these carbon prices correspond to additional costs ranging from approximately $1 to $5 per
kilometre flown, depending on fuel efficiency and carbon content assumptions.

Concurrent with carbon pricing pressures, the aviation industry faces mounting fuel cost
challenges through two primary mechanisms. First, conventional aviation fuel supplies are
increasingly constrained by environmental regulations and policy frameworks designed to
reduce fossil fuel dependency. Second, mandatory sustainable aviation fuel (SAF) adoption
requirements impose substantial cost premiums on airlines. Current market data indicates
that SAF costs between two to seven times more than traditional jet fuel, while EASA’s 2024
assessment shows conventional aviation fuel priced at €734 per tonne compared to aviation
biofuels at €2,085 per tonne. Industry projections suggest that SAF prices will remain two
to three times higher than conventional jet fuel until 2030 (World Economic Forum), creating
persistent upward pressure on airline fuel costs beyond carbon taxation effects.

Given these converging cost pressures from both carbon pricing mechanisms and fuel
supply constraints, we implement five counterfactual scenarios that increase the Frequency
x Distance coefficient by 1,000, 2,000, 3,000, 4,000, and 5,000 respectively. This experiment
captures the combined effects of escalating carbon taxation and higher fuel prices within a

range of $1-5 per additional kilometre flown. The lower bound reflects current EU ETS price
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levels with modest SAF adoption, while the upper bound corresponds to high carbon price
scenarios with extensive SAF mandates.

Airline competition also plays a crucial role in route network choices. While the increased
coefficients incentivise airlines to favour shorter routes, the change in route network affects
all airlines’ expected variable profits.

In Section 5.3 we estimated bounds on fixed costs and did not make any assumptions
about the distribution of fixed costs other than independence across products. To simulate
counterfactuals, we use an additional assumption on the distribution of fixed costs, assuming
these are drawn from a parametric distribution consistent with the bounds estimated in Sec-
tion 5.3. Section 6.1 discusses estimation of the fixed cost distribution under this additional
assumption. The counterfactual equilibrium concept and algorithm are described in Section

6.2. Section 6.3 presents the counterfactual results.

6.1 Fixed Cost Distribution Estimation

As noted above, we assume that fixed costs are independent across products. In addition,
we classify routes into T' types and assume that for each route j of type 7; fixed costs are

normally distributed:
ki ~ N (7)), 0%(75))-

The mean is the average fixed entry cost for routes of type 7,. We define route types as
follows: routes offered by the three largest full-service airlines (BA, AF, LH) including hub
airports, these same airlines’ routes excluding hub airports, routes offered by the three largest
LLCs (FR, U2, W6), and routes offered by a pooled group of smaller airlines including and
excluding hubs. This specification captures differences in entry costs across FSCs and LLCs
and across hub and non-hub airports. There are 11 route types in total.

In Section 4.2, the single market deviation implies the following two set of inequalities:

for any airline g, observed product j*, and alternative product j’, we have:

ng(j*) — 7T29<ja) — (Zj* — Zj’>0fc — Kj= + Ky >0 \V/]* € N;,j/ € Jait

-k

mog(57) = 2j05c — Ky >0 V5" €N

where J,1; is the set of feasible alternative routes for the observed route j*.

The marginal likelihood of observing route j* is given by:

/_Zg(j*) H (D(Mg(j*) _ mg(ij;)jl; - +M<Tj’>) gb(o’(i;;)) J(;*)dnj*

jlejalt
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and the partial log-likelihood function for all observed routes is:

Z;log/mj(j*) 11 @(W2g(j*) — mag(j’) — Ky +M(Tj’)> qb(J/(f;;)) 0(1 ;e

—00 G E€Tamt O<ngl) ng*>

Table 14 reports the estimation results for the lower bound, middle point, and upper
bound of the linear fixed-cost parameter estimates. They yield similar estimates for the
mean and standard deviation of the fixed cost shock distributions across all airline groups.
Hub routes for all full-service airlines exhibit negative mean fixed, while all non-hub routes

and routes operated by low-cost carriers demonstrate consistently positive means.

Table 14: Distribution for Fixed Cost Shocks by Airlines and Hub Status

Lower Bound Middle Point Upper Bound
Airline Route Type I o I o 1 o
Full-Service Airlines
Air France Non-hub 3.59 3.82 3.69 3.87 3.94 3.99
Hub —3.61 4.17 -3.72 4.19 -397 4.26
British Airways Non-hub 5.08 4.99 5.08 5.00 5.08 5.04
Hub —2.97  4.22 —2.97 4.27 —297 4.36
Lufthansa Non-hub 5.53 4.22 5.53 4.24 1.66 4.39
Hub -3.16 4.99 —-3.16 5.03 —-7.47 5.08
Low-Cost Airlines
Ryanair All routes 2.87 3.61 2.87  3.62 2.87 3.67
easyJet All routes 8.18 7.20 8.18 7.17 8.18 7.13
Wizz Air All routes 5.07 2.61 5.07 2.61 5.07 2.64
Pooled (Other Airlines)
Pooled Non-hub 5.64 3.67 6.11 3.72 5.61 3.70
Hub —-10.22 2.12 —-10.05 2.15 —-10.53  2.19

Notes: The means and standard deviations are in $10%. Each column block corresponds to lower bound,
middle point, and upper bound of the linear fixed-cost parameter estimates.

The negative hub route’s mean indicates the lower fixed entry costs for these routes,
which can be explained by established industry knowledge and practices. First, European
full-service airlines frequently benefit from extensive government incentive schemes and sub-
sidies, which fundamentally differs from the competitive landscape faced by major US carri-
ers. Many European airlines remain government-owned or receive substantial state support.
Research by Transport & Environment reveals that the aviation sector receives €26.4 bil-
lion of indirect subsidies annually through tax breaks on VAT (€13.6 billion) and fuel tax
exemptions (€10.7 billion) (Transport & Environment). This contrasts sharply with the

operational environment of the major US carriers, which operate as privately-owned entities
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with limited government support. The European model of state involvement creates implicit
incentives for maintaining certain routes that serve broader economic or political objectives
beyond pure commercial viability. Second, the fundamental purpose of many hub routes
operated by major full-service airlines in Europe is to facilitate international transfer pas-
sengers connecting to or from long-haul flights (Centreforaviation.com). Evaluating these
routes in isolation, considering only point-to-point demand, would rarely demonstrate prof-
itability. The network effects and connecting passenger flows create substantial value that
is not captured in simple route-level analysis.

Ryanair’s fixed entry cost is the lowest in the sample, a result consistent with its ultra-low-
cost operational model. In contrast, easyJet’s higher entry costs reflect a significant strategic
divergence. Unlike Ryanair’s exclusive focus on secondary airports, easyJet deliberately
operates from primary airports at considerably higher costs, positioning itself to compete
directly with full-service airlines at their traditional hub airports (Industry Report). This
strategic choice necessitates substantially higher entry costs as easyJet must overcome the
established advantages of incumbent full-service carriers while operating in more expensive
airport environments. The airline’s emphasis on higher frequency services and premium
airport access creates natural barriers to entry that require substantial initial investment to
establish competitive viability.

Our estimates of fixed entry costs align closely with established industry benchmarks.
For instance, the estimated entry cost for British Airways on an average non-hub route
approximates $0.5 million per quarter, translating to nearly $2 million annually. Industry
reports indicate that route establishment costs typically range between $1.5-3 million an-
nually for full-service carriers on medium-haul European routes (IATA Airline Profitability
Report). These estimates encompass not only direct operational costs but also substantial
fixed investments required for viable route operations, including airport slot acquisition (ex-
ceeding $500,000 for premium European airports), ground handling arrangements, marketing

expenditure, and regulatory compliance costs.

6.2 Counterfactual Simulation Algorithm

As discussed in Section 4.2, solving an equilibrium for the entire network is computation-
ally feasible. We restrict airlines’ action space to single-market deviations.

Simulation Algorithm: We fix the set of feasible routes for each airline throughout the
counterfactual simulation. If a city is served by an airline, it is likely that this airline will
maintain some presence in this city, even if it exits the city in later counterfactual iterations.

For each quarter, we rank markets based on total revenues, and airlines in a market based
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on their revenues.??

Then, we begin with the market with the highest total revenue. For each airline in that
market, starting from the airline with the highest revenue, we evaluate whether redeploying
its aircraft (frequency) to an alternative route would yield a higher expected net profit. If
an airline finds a more profitable alternative route, it deviates accordingly. In addition, if
the expected net profit of the current route is negative, the airline exits the market. After
all airlines in the market have been evaluated and potential deviations executed, we proceed
to the next market in the revenue ranking and repeat the process. After a market has been
processed, the rankings of airlines in subsequent markets are updated if an airline has entered
that market. The ranking of markets are updated after all markets have been visited. This
continues until all markets have been visited. This ordering mimics real-world behaviour, as
airlines typically prioritise larger markets over smaller ones and are likely to make decisions
for larger markets first. Also, larger airlines in a market are likely established incumbents,
while other smaller airlines are likely followers.

Drawing Fixed Cost Shock: We need to draw fixed cost shocks to ensure the observed
route network satisfies the single-market deviation constraints. Our dataset contains 64,661
Quarter-Airline-Route combinations. We first draw #; for all alternative routes. Then, &;-

is drawn from the truncated normal distribution with the following upper bound:

Ry < min {mag(5*) — 729 (J') — (20 — 2j7)0sc — Fijr}
J' €Tt

Note that all variables depend on f; which is held fixed.

6.3 Counterfactual Results

We simulate counterfactuals separately for 4 quarters, 5 carbon prices, and 3 linear fixed-
cost parameter estimates (lower bound, middle point, and upper bound). In all cases, the
algorithm converged, with convergence occurring on average around 5 iterations. Table 15
presents the counterfactual results by airline type.

Total Routes denotes the total number of unique routes in our sample. Unsurprisingly,
the summer peak season (Q2, Q3) features substantially more routes than the winter off-
peak season (Q1, Q4). Low-cost carriers contribute the majority of unique routes, followed
by full-service airlines and regional carriers. This distribution reflects the European aviation
market structure, where low-cost carriers have significantly expanded their route networks

following liberalisation.

22For the counterfactual simulation, we use the same 36 draws of ¢ and w as in the estimation of linear
fixed cost parameters.
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Total Deviations measures the reallocation of aircraft to different routes by exiting current
markets and entering new ones. The number of deviations increases monotonically with
carbon cost intensity—from 40 under low carbon costs to 222 under ultra-high costs in peak
season. while deviations represent approximately 3-7% of total routes, their impact extends
far beyond this percentage, as discussed below. Crucially, the burden falls disproportionately
on regional carriers, who can account for over 120 deviations compared to just 8-54 for larger
airlines. This fragility stems from regional airlines’ longer average route lengths and thinner
profit margins. In contrast, full-service carriers benefit from hub economies of scale and
established market positions, while low-cost carriers operate higher-frequency, shorter-haul
routes that are less carbon-intensive per passenger-kilometre.

Exit Number captures routes where airlines withdraw completely rather than redeploying
aircraft. Pure exits increase substantially with carbon costs, rising from as few as 7 to
as many as bl under extreme scenarios. Remarkably, exits concentrate almost exclusively
amongst low-cost carriers, with only scattered exits by regional carriers and virtually none
by full-service airlines across all scenarios. This pattern reflects the thin operating margins
inherent to the low-cost business model, as evidenced by the lower expected variable profits
shown in Table 9. The near-complete absence of full-service carrier exits underscores the
powerful role of hub networks and sunk investments in maintaining route viability even under
extreme carbon pricing—a finding consistent with evidence that full-service airlines exhibit
greater route persistence due to network effects and slot constraints at major airports.

Total Markets refers to unique city pairs served in our sample. Changed Markets de-
notes city pairs experiencing altered market structure between counterfactual and observed
networks, where market structure encompasses all product offerings governing competitive
dynamics. Regional airlines again show the greatest sensitivity: under ultra-high carbon
costs, approximately 25-27% of regional airline markets experience structural changes, com-
pared to less than 10% for full-service and low-cost carriers. This disparity reflects regional
carriers’ focus on thinner routes with fewer competitors, where the exit or entry of even a
single airline fundamentally alters market conditions.

Affected Routes quantifies all routes in the observed network experiencing market struc-
ture changes. Revenue and profit or those routes change despite unchanged exogenous at-
tributes through competitive spillovers. Notably, the affected routes can reach 10-20% of
the total network—substantially exceeding the direct impact measured by total deviations
alone. This multiplier effect demonstrates that carbon pricing’s competitive consequences
extend well beyond the routes directly restructured. Unlike previous metrics, affected routes
distribute more evenly across airline types relative to their network sizes, suggesting that

competitive interdependencies propagate throughout the network regardless of the type of
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airlines.

In summary, carbon pricing triggers cascading effects throughout the European aviation
network, with regional carriers bearing disproportionate adjustment costs while full-service
carriers demonstrate remarkable resilience. Crucially, the true economic impact extends far
beyond the routes directly restructured: competitive spillovers affect a substantial portion of
the network, with up to 433 routes experiencing altered profit conditions in peak season under
ultra-high carbon costs. This multiplier effect—where market structure changes propagate
throughout interconnected city-pair markets—highlights the critical importance of general
equilibrium considerations in transport policy evaluation. Analyses focusing solely on direct
route adjustments would severely underestimate the policy’s full economic consequences.

How do ticket prices, passenger numbers, and airlines’ net profits adjust when an ad-
ditional carbon cost is imposed and the route network is re-optimised? Addressing these
questions clarifies which types of routes shift for different airline groups and sets up the
welfare analysis that follows. Table 16 reports the results for Q2, which we highlight because
the Q2 network is the largest and therefore most informative; the other quarters display very
similar patterns.

We report average fares separately for routes that are common to both the baseline and
counterfactual networks and for routes that appear only in one network (i.e., non-common
routes that are either newly added or dropped). Average fares on common routes remain
stable across scenarios because the underlying market structure on those links—such as the
set of active competitors and their relative positions—changes little, so second-stage pricing
incentives are largely preserved. In contrast, for non-common routes, the pattern depends on
airline type. For large full-service and low-cost carriers, the routes that are discontinued or
replaced tend to have below-average fares, which suggests that re-optimisation targets links
where competition is stronger and price premia are limited—often because the routes do not
connect hubs or major cities and hence cannot sustain higher markups. For small regional
carriers, however, the deviated (dropped) routes typically have higher average fares; these
links are frequently (near-)monopoly services connecting remote, long-distance pairs that are
relatively costly to operate under higher carbon prices and that face thinner demand.

The mechanism linking carbon costs to fares operates through the network rather than
directly through prices in our two-stage framework. In the second stage, pricing depends on
the contemporaneous competitive structure of the realised network, not directly on costs.
Consequently, higher carbon costs influence fares by altering which routes are profitable to
operate, which then changes competitive intensity on the resulting network. This implies
that higher carbon costs do not mechanically translate into higher pass-through to prices

or lower total passenger numbers. Empirically, across counterfactuals, newly chosen routes
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exhibit higher average fares than common routes, but this difference does not necessarily
grow monotonically with the level of the carbon cost. As carbon costs rise, some previously
optimal links become unprofitable and exit; this selection margin widens the gap between
the average fares of old and new routes, which is precisely what we observe.

Passenger volumes can increase relative to the baseline even when carbon costs are higher,
because fares on common routes are nearly unchanged while the re-optimised network may
attract additional demand on newly added links. In our results, total passenger numbers rise
in all scenarios. For large carriers, the aggregate change is modest, reflecting the fact that
their core, high-capacity networks remain largely intact. For regional airlines, the propor-
tional increase is more pronounced, because their newly selected routes feature substantially
lower average fares relative to the routes they discontinue, which stimulates demand. A
decomposition confirms that most of the passenger growth for regional carriers originates
from non-common (i.e., newly operated) routes.

Higher passenger numbers and nearly stable fares do not guarantee higher net profits,
because fixed and carbon-related costs also increase. In the baseline, we estimate total
net profits across all airlines at approximately $8.89 billion (USD). This magnitude aligns
extremely well with industry evidence for 2019, which places European airlines’ net profits at
roughly €7 billion (Eurocontrol Industry Monitor June 2019) and is consistent with IATA’s
regional benchmarks (IATA Airline Industry Economic Performance June 2019).23 Across
counterfactuals, net profits decline for all airline groups and the losses increase with the
carbon cost, as expected. Full-service and regional carriers experience the largest reductions,
which is consistent with their longer average stage lengths—implying higher carbon exposure
per link—and with the relatively lower average fares on the routes they select after re-
optimisation.

In Table 17, we report the change in airlines’ net profit (producer surplus), consumer
surplus, and the carbon-related revenues paid by airlines—either to government in the form
of a carbon tax or to fuel suppliers via higher prices for sustainable fuels. We then present
the combined change in producer and consumer surplus, followed by the total welfare change
obtained by adding carbon revenues to these surplus components. For completeness, we also
report the change in daily flown distance, which provides a transparent proxy for daily carbon
savings: flying fewer total kilometres implies lower emissions, holding aircraft technology and
load factors fixed.

The results display several patterns. Net profit losses become more severe as the car-

bon cost rises, reflecting higher per-kilometre operating costs and re-optimisation away from

ZDifferences stem from currency units (USD vs. EUR), data vintages, coverage definitions, and the fact
that our aggregates are model-based.
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previously profitable links. By contrast, consumer surplus increases in all scenarios, because
newly entered routes tend to exhibit lower fares and attract additional passengers, consis-
tent with the demand and pricing movements documented in Table 16. On balance, the
combined consumer-producer surplus becomes more negative at higher carbon cost levels,
largely because growing profit shortfalls outweigh consumer gains.

Carbon revenues are constructed from the change in total frequency-distance cost in each
counterfactual relative to the baseline. Two forces operate simultaneously. First, the per-
kilometre charge increases with the carbon price (or the renewable-fuel premium). Second,
total frequency-distance adjusts as airlines enter and exit routes in response to profitability.
As the per-kilometre cost rises, the revenue component increases mechanically, while network
adjustments can either amplify or partially offset this depending on how total operated
distance responds.

The most consequential finding concerns total welfare, defined as the sum of the surplus
changes and carbon revenues. Once carbon revenues are included, the net welfare effect
becomes positive rather than negative. Intuitively, the carbon charge reduces distortions on
two margins. It prices the externality directly (the Pigouvian channel) and, through network
re-optimisation, can temper mark-ups on links with pronounced market power—improving
allocative efficiency even before counting the environmental benefits of lower emissions. This
mechanism is consistent with established results on corrective taxation and the “double-
dividend” discussion in environmental economics, where revenue recycling and competitive
reallocation can yield welfare gains in already distorted markets. In the European air-
line context—where many routes are effectively monopolies or duopolies—this channel is
particularly salient. The policy implication is that, provided the raised revenues are used
productively (for example, to reduce other distortionary charges or to support efficiency-
enhancing infrastructure), carbon pricing can deliver broad social gains in addition to its
primary environmental objectives.

Finally, the overall impact of the carbon policy is distributed unevenly across European
countries. Figure 4, Figure 5, and Figure 6 report the percentage changes in consumer sur-
plus, airlines’ net profits, and total welfare by country in Q2 under the UHigh counterfactual.
To attribute route-level changes to countries, we weight each route’s contribution by the pop-
ulation shares of its origin and destination cities and then aggregate to the country level. For
cities that straddle national boundaries (e.g., Copenhagen/Malmo or Vienna/Bratislava), we

split each measure evenly across the two affected countries to avoid double counting.?*

24This allocation preserves country aggregates while remaining neutral with respect to cross-border func-
tional city regions.
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Figure 4: Change of Consumer Surplus by Countries (Q2, UHigh)

Consumer surplus increases most strongly, in percentage terms, in several Central and
Eastern European countries such as Poland, Slovakia, and Hungary. Two forces account
for this pattern. First, many of the newly entered routes under the carbon constraint are
relatively short-haul links within the region, which typically sustain lower average fares and
attract higher passenger volumes once the network is re-optimised. Second, these countries
offer dense catchment areas with multiple viable secondary airports, expanding entry options
and intensifying competition on newly operated links. By contrast, peripheral and island
geographies such as Iceland, Norway, Greece, and Portugal experience declines in consumer
surplus. Longer stage lengths in these regions raise carbon-related costs per flight, and the
re-optimised network is more likely to cancel or deviate from thin, long-haul leisure routes;
both the reduction in available links and the higher average fares on surviving routes depress
passenger volumes. These directional effects are consistent with industry evidence that
carbon exposure scales with distance and that periphery markets rely disproportionately on

long sectors with limited substitution options.?

25For background, see industry discussions of distance-related carbon cost exposure and the resilience of
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Figure 5: Change of Net Profit by Countries (Q2, UHigh)

Net profit changes in Figure 5 follow a similar geography. Peripheral countries see the
largest percentage drops, reflecting both higher incremental carbon costs on longer average
stage lengths and a greater incidence of route exits, which remove positive-contribution links
from the portfolio. In Central and Eastern Europe, the declines are more muted because
newly entered, demand-rich short-haul routes can offset part of the cost increase, and the
shorter sectors imply a smaller per-flight carbon cost uplift. This asymmetry aligns with pre-
existing carrier network strategies: ultra- and low-cost carriers have concentrated growth in
Central /Eastern Europe using short-haul, high-frequency networks and secondary airports,
while full-service and regional operators disproportionately serve longer or thinner markets

where the fixed and carbon-related cost burden is harder to dilute.

short-haul, multi-airport networks in Europe in 2019-2023 reporting (e.g., EUROCONTROL network and
market monitors; IATA regional outlooks).
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Figure 6: Change of Total Welfare by Countries (Q2, UHigh)

Total welfare changes mirror the joint behaviour of consumer surplus and producer sur-
plus. Central and Eastern European countries emerge as net beneficiaries under the UHigh
policy; for example, Poland records a projected total welfare gain of about 14.8%. In con-
trast, remote areas such as Iceland and Norway experience the largest welfare losses, driven
by reduced network connectivity and higher average travel costs on retained routes. For
countries hosting large hub airports—such as the UK, France, and Germany—aggregate
welfare changes are comparatively small. Hub networks tend to preserve core trunk routes
even under higher operating costs, which stabilises both prices and volumes on the common
network segment; as a result, the national aggregates move little despite rebalancing at the
margin across thinner spokes. Overall, these patterns are consistent with the notion that
carbon pricing reshapes the extensive margin of route choice more forcefully in peripheral,

long-haul-dominated markets than in central, short-haul-dense systems.
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7 Conclusion

This paper quantifies the impacts of carbon regulation on the European airline industry.
Our analysis reveals that network changes are concentrated among low-cost and regional car-
riers, while full-service carriers’ networks remain largely unaffected. The policy also triggers
a geographic redistribution of welfare, benefiting Central and Eastern Europe at the expense
of long-haul markets. Despite reducing airline profits by up to 17%, the regulation enhances
consumer surplus by up to 9% and cuts total distance flown by up to 6.6%. These findings
suggest that carbon regulation can achieve a “double dividend,” yielding both environmental

and social welfare gains.
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