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Abstract

Estimation and counterfactual analysis in dynamic structural models rely on assump-
tions about the dynamic process of latent variables, which may be misspecified. We
propose a framework to quantify the sensitivity of scalar parameters of interest (e.g.,
welfare, elasticity) to such assumptions. We derive bounds on the scalar parameter
by perturbing a reference dynamic process, while imposing a stationarity condition for
time-homogeneous models or a Markovian condition for time-inhomogeneous models.
The bounds are the solutions to optimization problems, for which we derive a com-
putationally tractable dual formulation. We establish consistency, convergence rate,
and asymptotic distribution for the estimator of the bounds. We demonstrate the
approach with two applications: an infinite-horizon dynamic demand model for new
cars in the United Kingdom, Germany, and France, and a finite-horizon dynamic labor
supply model for taxi drivers in New York City. In the car application, perturbed price
elasticities deviate by at most 15.24% from the reference elasticities, while perturbed
estimates of consumer surplus from an additional $3,000 electric vehicle subsidy vary
by up to 102.75%. In the labor supply application, the perturbed Frisch labor sup-
ply elasticity deviates by at most 76.83% for weekday drivers and 42.84% for weekend
drivers.
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1 Introduction

Dynamic structural models are useful tools for counterfactual policy analysis in various fields

of economics. The dynamic process of latent variables is a key feature of these models, as

it captures the persistence of unobserved factors that affect agents’ decisions over time.

Examples of potentially serially correlated latent variables include product characteristics

in demand estimation (Nair (2007); Schiraldi (2011); Gowrisankaran and Rysman (2012)),

search costs in consumer search (Koulayev (2014)), firm productivity in trade (Piveteau

(2021)), patent profitability in optimal stopping (Pakes (1984)), quality in technology adop-

tion (De Groote and Verboven (2019)), health shocks in insurance (Fang and Kung (2021)),

and beliefs about ability in labor economics (Miller (1984); Arcidiacono et al. (2025)).

Assumptions about the dynamic process governing the serial dependence of latent vari-

ables are central to the estimation and counterfactual analysis in dynamic structural models.

These assumptions capture agents’ uncertainty about the future, such as a consumer’s un-

certainty about future product characteristics in demand estimation. The misspecification

of these assumptions can lead to biased estimates of future continuation value, which in turn

bias counterfactual predictions (e.g., welfare and elasticity). However, the direction and mag-

nitude of this bias are unclear, because the models are dynamic and nonlinear. This raises

the need for sensitivity analysis of empirical results to these distributional assumptions.

In this paper, we propose a framework to quantify this sensitivity by perturbing a ref-

erence dynamic process to compute bounds on a scalar parameter of interest. The scalar

parameter (e.g., welfare and elasticity) is a function of model primitives, such as model pa-

rameters, the distribution of latent variables, and the value function in dynamic structural

models. In our proposed framework, the bounds on this scalar parameter are the solutions

to constrained optimization problems whose feasible region (identified set) is defined by mo-

ment conditions for estimation, structural constraints (e.g., the Bellman equation), and the

perturbation set around the reference transition distribution. The distribution that achieves

the bound is called the worst-case distribution.

A central challenge is to define the perturbation set in a way that simplifies computation

while maintaining key structural features of the distribution of latent variables. For time-

homogeneous models, the structural feature is the stationarity condition, i.e., the perturbed

dynamic process must be stationary. For finite-horizon, time-inhomogeneous models, the

perturbed trajectory of latent variables must be Markovian. In addition, the terminal distri-

bution is fixed because it can be nonparametrically point identified (Lewbel (2000); Matzkin

(2007)). Because the stationarity and Markov conditions are functional constraints imposed
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directly on the distribution being optimized, they are computationally difficult to impose.

We contribute to the sensitivity analysis literature (e.g., Christensen and Connault (2023))

by providing a computationally tractable framework to deal with these constraints.

There are further practical challenges. First, the properties (e.g., closed-form, smooth-

ness) of the worst-case distribution are typically unclear, complicating the choice of approx-

imation methods. Second, the expectations that define the scalar parameter, the model-

implied moments, and the structural constraints are all calculated with respect to the per-

turbed distribution. Because this distribution is itself an optimization variable that changes

during the optimization, the numerical integration can be difficult to implement. Third,

the value function in dynamic structural models is infinite-dimensional due to the serial

dependence of latent variables, which complicates the optimization problem further.

To address these challenges, we define the perturbation set as a Kullback–Leibler (KL)

divergence ball around the reference distribution. For the time-homogeneous case, the refer-

ence distribution is a joint distribution of current and future latent variables. For the time-

inhomogeneous case, it is the joint distribution of the entire trajectory of latent variables.

The KL radius controls the size of the perturbation set. We then employ the Optimal Trans-

port (OT) framework to impose structural constraints on the distribution of latent variables.

In the time-homogeneous case, the stationarity condition requires that the marginal distri-

butions of current and future latent variables of the perturbed joint distribution coincide,

which can be imposed using OT. This marginal constraint, together with the KL divergence

penalty from the problem’s Lagrangian, yields a computationally tractable Entropic Optimal

Transport (EOT) problem. In the time-inhomogeneous case, the perturbed trajectory must

be Markovian, and the terminal distribution is fixed. We show how to formulate this as an

EOT problem.

The EOT problem can be solved using its dual formulation, which has three key ad-

vantages over the primal formulation. First, it provides a closed-form expression for the

worst-case distribution and characterizes its smoothness. During our proposed optimization

algorithm, this closed-form expression is used to update the value function in dynamic struc-

tural models. Second, the Sinkhorn algorithm (Sinkhorn and Knopp (1967); Cuturi (2013))

allows us to solve the EOT problem and compute the worst-case distribution efficiently. Fi-

nally, because the expectations in the dual problem are taken with respect to the reference

distribution, an appropriate numerical integration method can be chosen in advance.

Then we consider three complementary sensitivity measures to interpret the results. First,

the global sensitivity approach computes the largest deviation from the reference value. It

progressively increases the KL radius until the bounds flatten. We show that it provides
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a tractable approximation to the nonparametric bounds on the scalar parameter when the

KL divergence constraint is removed. Moreover, we derive an explicit upper bound on the

approximation error, which enables us to control the error within a desired level. Second,

the local sensitivity approach analyzes the effect of small perturbations. It computes the

right derivatives of the bounds with respect to the KL radius at zero, which serves as our

local sensitivity measure. Finally, the robustness metric approach, inspired by Spini (2024),

computes the smallest deviation from the reference distribution required to produce sensitive

results. It is the smallest KL divergence from the reference distribution required for the scalar

parameter’s value to fall below a user-specified threshold (e.g., 5% below the reference value).

In addition to our three sensitivity measures, we can also estimate an alternative model and

set the radius as the KL divergence between the alternative and reference models.

For large sample properties, we propose an estimator for the bound, establishing its

consistency and convergence rate. To this end, we first establish the consistency and conver-

gence rate of the estimator of the identified set, following Chernozhukov et al. (2007). We

then derive the asymptotic distribution of the plug-in estimator by proving the Hadamard

directional differentiability of the bound.

We apply our framework to an infinite-horizon dynamic demand model for new cars in the

UK, Germany, and France. We consider the sensitivity of the price elasticity and consumer

surplus from an additional $3,000 electric vehicle subsidy. In the model, the indirect utility of

purchasing is a latent variable due to unobserved product characteristics, and its transition

is typically modeled as an AR(1) process (e.g., Schiraldi (2011); Gowrisankaran and Rysman

(2012)). For the price elasticity, we find that the French market is the least sensitive to the

distributional assumption (at most 6.20% deviation from the reference elasticity), while the

German market is the most sensitive (at most 15.24% deviation). We also find that this

sensitivity is relatively stable over time for all three markets. For the consumer surplus, the

German market is also the most sensitive (at most 102.75% deviation from the reference

consumer surplus), while the UK and French markets are less sensitive (at most 25.17% and

24.73% deviation, respectively). Importantly, the results remain economically meaningful

even under the worst-case distribution, with the consumer surplus remaining at least $309

million for the German market, $1,243 million for the French market, and $2,584 million for

the UK market.

We also apply our framework to a finite-horizon dynamic labor supply model for taxi

drivers in New York City. We consider the sensitivity of the elasticity of stopping work

and the Frisch elasticity of labor supply. In the model, the market-level supply shock is a

latent variable, and its transition is also modeled as an AR(1) process. For the elasticity
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of stopping work, we find that weekday drivers’ elasticity is more sensitive in the morning,

while weekend drivers’ elasticity is more sensitive in the afternoon. For the Frisch elasticity,

both weekday and weekend drivers’ elasticities are sensitive to the distributional assumption,

with at most 76.83% and 42.84% deviation from the reference elasticity, respectively.

1.1 Related Literature

Identification and estimation. Many papers have focused on identification in a range of dy-

namic structural models including finite mixture models (Kasahara and Shimotsu (2009);

Luo et al. (2022); Higgins and Jochmans (2023, 2025)), unobservable Markov processes (Hu

and Shum (2012)), and counterfactual conditional choice probabilities in dynamic binary

choice models (Norets and Tang (2014)). Berry and Compiani (2023) uses the generalized

instrumental variable approach for unobserved state variables in dynamic discrete choice

(DDC) models. In fixed effects DDC models, Aguirregabiria et al. (2021) considers identi-

fication of structural parameters using sufficient statistics, while Aguirregabiria and Carro

(2024) studies identification of average marginal effects. Hwang (2024) employs proxy vari-

ables for the latent variables. Kalouptsidi et al. (2021c) proposes the Euler Equations in

Conditional Choice Probabilities (ECCP) estimator. By leveraging finite-dependence prop-

erties and cross-sectional data, it identifies structural parameters in the presence of serially

correlated market-level unobserved variables without distributional assumptions. Arcidia-

cono and Miller (2011) adapts the Expectation-Maximization algorithm to estimate DDC

models with discrete latent types. Norets (2009) extends the Bayesian estimation of DDC

models by Imai et al. (2009) to allow for serially correlated latent variables, while Blevins

(2016) proposes a sequential Monte Carlo method. Chiong et al. (2016) shows identification

in DDC models is an optimal transport problem under serial independence of utility shocks.

In addition, Chen et al. (2011), Schennach (2014), and Fan et al. (2023, 2025) consider infer-

ence of finite-dimensional parameters in the presence of an infinite-dimensional parameter,

namely the distribution of latent variables.

Our framework contributes to this literature in three ways. First, we focus directly on a

scalar parameter (e.g., welfare, elasticity) rather than on the identified set of model prim-

itives. Second, to analyze sensitivity, we consider a perturbation set around the reference

distribution rather than the set of all distributions. Third, we complement identification

strategies that do not rely on distributional assumptions. In the labor supply application,

we use the ECCP estimator of Kalouptsidi et al. (2021c) to point identify the utility pa-

rameters and then conduct sensitivity analysis of the labor supply elasticity with respect to

assumptions about the dynamic process of the market-level supply shock.
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Sensitivity analysis and robustness. In DDC models, Kalouptsidi et al. (2021a,b) relax

common normalizations on the utility function. Bugni and Ura (2019) considers the local

misspecification of the transition density of observable variables, assuming the transition

density is correctly specified in the limit (as the sample size goes to infinity) in DDC mod-

els. Andrews et al. (2017) considers a setting in which the moments are locally misspecified

under the reference distribution. Subsequent work Armstrong and Kolesár (2021) constructs

near-optimal confidence intervals in such models. Kitamura et al. (2013) considers the ro-

bust estimation under moment restrictions. Bonhomme and Weidner (2022) perturbs the

reference model and assumes the size of the perturbation shrinks to zero as the sample size

goes to infinity. Chen et al. (2024) relaxes the rational expectation assumption. Gu and

Russell (2024) considers the identification of scalar counterfactual parameters using optimal

transport. Spini (2024) studies the robustness of policy effects to changes in the distribution

of covariates. Armstrong (2025) provides a selective review of misspecification in econo-

metrics. Most closely related is Christensen and Connault (2023), who conducts sensitivity

analysis with respect to parametric assumptions about the distribution of latent variables

in structural models. However, they focus on relaxing the marginal distribution assumption

while maintaining serial independence.

We contribute to this literature in three ways. First, our focus on misspecified dynamic

processes complements previous analysis of misspecification in dynamic structural estimation

(e.g., Bugni and Ura (2019); Kalouptsidi et al. (2021a,b); Christensen and Connault (2023)).

Second, the size of our perturbation set is fixed and does not shrink with the sample size.

Third, we provide a computationally tractable dual formulation for the optimization problem.

While prior work (Schennach (2014); Gu and Russell (2024); Christensen and Connault

(2023)) uses duality to convert the infinite-dimensional problem to a finite-dimensional one,

our dual problem is still infinite-dimensional. This is because the stationarity condition for

time-homogeneous models and fixed terminal distribution for time-inhomogeneous models

are infinite-dimensional, and serial dependence leads to an infinite-dimensional value function

in dynamic structural models. However, by leveraging EOT duality, we provide a tractable

implementation and demonstrate our approach through two empirical applications.

Distributionally robust optimization (DRO). The literature on DRO (Kuhn et al. (2019);

Rahimian and Mehrotra (2019); Blanchet et al. (2022); Gao and Kleywegt (2023); Wang

et al. (2021)) usually studies the uncertainty due to limited observability of data, noisy

measurements, or estimation errors.

Our work is distinct in that we study the misspecification due to assumptions about

the serial dependence of latent variables—a problem of model specification rather than data
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limitation. Moreover, because our framework can be treated as a moment-constrained DRO

problem, we employ the minimax theorem (see Fan (1953) and Ricceri and Simons (1998),

Theorem 1.3) to exchange the order of the supremum over Lagrangian multipliers (for the

moment conditions and structural constraints) and the infimum over distributions in the

perturbation set. This exchange allows a direct application of duality results from the DRO

literature, which simplifies our proof of the dual formulation significantly.

Applied work. Building on the seminal work on the estimation of DDC models (Rust

(1987); Hotz and Miller (1993); Aguirregabiria and Mira (2002, 2007); Pesendorfer and

Schmidt-Dengler (2008); Arcidiacono and Miller (2011)), most applied work assumes the

serial independence of utility shocks. In the presence of serially correlated latent variables,

parametric models are often used, as seen in the works of Schiraldi (2011); Gowrisankaran

and Rysman (2012); Blevins et al. (2018); Piveteau (2021) and others mentioned in the

introduction.

We contribute to this literature by developing a computationally tractable framework

for sensitivity analysis of scalar parameters of interest to these distributional assumptions.

We also demonstrate our framework through two empirical applications: an infinite-horizon

dynamic demand model, and a finite-horizon dynamic labor supply model.

Outline: Sections 2 and 3 present our framework for time-homogeneous and time-

inhomogeneous models. Section 4 establishes the large sample properties of our estimator.

Section 5 introduces three sensitivity measures. Section 6 discusses practical implementa-

tion. Sections 7 and 8 present two empirical applications. Section 9 concludes. Appendix A

presents additional examples. All proofs are in Appendix B.

Notation: Let U ∈ U ⊆ Rd be a vector of latent variables with support U where U is

assumed to be Polish. Let P(U) be the space of Borel probability measures on U and B(U) be

the Borel σ-algebra on U . In this paper, all measures are assumed to be absolutely continuous

with respect to the Lebesgue measure. Denote by EF [·], Ex [·] the expectations with respect

to F ∈ P(U) and the probability distribution of the random variable x, respectively. For

variables in a stationary dynamic context, a prime (e.g., x′) denotes the variable’s value in

the next period. Let F1, F2 ∈ P(U), we write F1 � F2 if F1 is absolutely continuous with

respect to F2, and F1 ⊗ F2 as the product measure. For a finite-dimensional vector, denote

by ‖ · ‖p the p-norm. Denote by Lp(F ) the space of functions for which
∫
|f |pdF <∞. For

a set A, let int(A) denote its interior. Denote by R+ the set of non-negative real numbers,

and N the set of natural numbers. Finally, let J := {1, · · · , J}.
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2 Methodology for Time-Homogeneous Models

This section presents our methodology for time-homogeneous models. Section 2.1 defines the

perturbation set. Section 2.2 gives two examples. Section 2.3 presents the general framework

and derives duality results. Section 2.4 discusses how to perturb the stationary distribution.

2.1 Definition of Perturbation Set

We partition a vector of latent variables U ∈ U ⊆ Rd into 2 ≤ k ≤ d subvectors, i.e.,

U = (U1, · · · , Uk).1 Each subvector Ui ∈ Ui ⊆ Rdi has a marginal distribution νi ∈ P(Ui) for

i = 1, · · · , k. Let F0 denote the reference distribution for U . The perturbation set around

this reference distribution is defined as:

F := {F ∈ P(U) | F ∈ Π(ν1, · · · , νk), DKL(F‖F0) ≤ δ}

where Π(ν1, · · · , νk) is the set of joint distributions on U with marginals {νi}ki=1, and δ ≥ 0

measures the “size” of the perturbation set, defined by the Kullback-Leibler (KL) divergence:

DKL(F‖F0) :=


∫

log
Ä
dF (U)
dF0(U)

ä
dF (U) if F � F0

+∞ otherwise

In time-homogeneous models, the marginal distribution constraints are used to impose the

stationarity. Consider an unobserved stationary first-order Markov process {ξt}t∈Z with state

space Ξ ⊆ Rdξ . The process is stationary with respect to ν0 ∈ P(Ξ) if
∫
F0(dξ′|ξ)ν0(dξ) =

ν0(dξ′) for all ξ′ ∈ Ξ, where F0(dξ′|ξ) is the reference transition kernel (e.g., conditional

Gaussian distribution for an AR(1) process). This is equivalent to requiring that the marginal

distributions of the joint distribution dF0(ξ, ξ′) := F0(dξ′|ξ)ν0(dξ) are both ν0, i.e., F0 ∈
Π(ν0, ν0). Moreover, for any F ∈ Π(ν0, ν0), its conditional density F (dξ′|ξ) preserves ν0 as a

stationary distribution. For this example, let U := (ξ, ξ′). Then, the perturbation set is:

F := {F ∈ P(U) | F ∈ Π(ν0, ν0)︸ ︷︷ ︸
Stationarity

, DKL(F‖F0) ≤ δ︸ ︷︷ ︸
Perturbation

}

This definition allows us to perturb the transition kernel of the Markov process while keeping

its stationary distribution unchanged. It can introduce non-linear dynamics into the latent

variable process. For example, if the reference model is an AR(1) process, the perturbation

1The vector U can also contain observable variables.
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set includes any nonlinear first-order Markov process with the same stationary distribution

as the AR(1) process. Section 2.4 discusses how to perturb the stationary distribution. In

this case, we replace the condition F ∈ Π(ν0, ν0) with F ∈ Π(ν, ν), where ν is the perturbed

stationary distribution that is in a neighborhood of ν0.

The marginal constraints with the KL constraint form a computationally tractable EOT

problem whose implementation depends on its dual formulation (see Section 2.3).2

Remark 1. (i) We can further partition (ξ, ξ′) into some subvectors to analyze sensitivity

to distributional assumptions about cross-sectional dependence.

(ii) We can also consider higher-order Markov processes by expanding the state space. For

example, if the perturbed process is a second-order Markov process, then perturbation

set can be defined on the joint distribution of (ξ̃t, ξ̃t+1) where ξ̃t = (ξt, ξt+1).

2.2 Examples

Our framework applies to a variety of latent variables, including utility shocks, productivity

characteristics, labor supply shocks, etc. This section focuses on a parametric model for

latent variables beyond utility shocks in infinite and finite-horizon DDC models. Appendix

A considers: (i) serial independence of utility shocks in DDC models, and (ii) serial indepen-

dence of consumption shocks in dynamic discrete-continuous choice models. The bounds on

a scalar parameter are solutions to constrained optimization problems over the perturbation

set subject to structural constraints (e.g., Bellman equation) and moment conditions.

Example 1 (Infinite Horizon Dynamic Discrete Choice Models with Serially Correlated

Latent Variables). This example considers a parametric model for serially correlated latent

variables in a single-agent DDC model as in Rust (1994). Let ξ ∈ Ξ be the exogenously

evolving latent variable (e.g., unobserved productivity characteristics). Agents solve the

smoothed3 Bellman equation for the conditional value function v ∈ V where V is a function

class (e.g., square integrable functions, the Hölder class, etc.): for ∀ (x, ξ, j) ∈ X × Ξ× J ,

vj(x, ξ) = uj(x, ξ; θ) + βEξ′|ξEx′|x,j

[
log

(∑
j′∈J

exp(vj′(x
′, ξ′))

)]
+ βγ (1)

where x ∈ X is the observable state variable, β ∈ (0, 1) is the discount factor, γ is the Euler

2For duality results of general divergence constrained OT problem, see Bayraktar et al. (2025).
3We assume that the utility shock is additively separable in the period utility function and follows an

i.i.d. Extreme Value Type I distribution, leading to the log-sum-exp form of the value function Rust (1987).
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constant, and uj(x, ξ; θ) is the period utility of choosing action j ∈ J parameterized by θ ∈
Θ. The model-implied Conditional Choice Probability (CCP) is p(j|x, ξ) =

exp(vj(x,ξ))∑
j′∈J exp(vj′ (x,ξ))

.

Let U := (ξ, ξ′) be a vector of current and future latent variables. An AR(1) process is

often used to model the transition of ξ. Therefore, the reference distribution is dFθf (U) :=

Fθf (dξ
′|ξ)νθf (dξ) where Fθf (dξ

′|ξ) is the conditional distribution parameterized by θf ∈ Θf

(e.g., the parameters of the AR(1) process), and νθf is its stationary distribution. The

perturbation set for a given θf is defined as:

Fθf :=
{
F ∈ P(U) | F ∈ Π(νθf , νθf ), DKL(F‖Fθf ) ≤ δ

}
Suppose the scalar parameter of interest is the average elasticity of action j with respect

to variable xl, defined as:

EνθfEx
ï
∂p(j|x, ξ)

∂xl

xl
P0(j|x)

ò
where P0(j|x) is the population CCP, and the expectation is taken with respect to the joint

distribution F ∈ Fθf and the distribution of x.

We convert the smoothed Bellman equation (1) into an unconditional moment restriction

that depends on the joint distribution F . We assume4 there exists a class of Lagrange

multiplier functions G5 such that v solves the Bellman equation (1) if and only if:

sup
g∈G

EFEx,j,x′
[
gj(x, ξ)

(
vj(x, ξ)− uj(x, ξ; θ)− β log

(∑
j′∈J

exp(vj′(x
′, ξ′))

)
− βγ

)]
= 0

where the inner expectation is taken with respect to the stationary distribution of x, the

population CCPs, and the conditional distribution of x′ given (x, j). Let g := (gj)j∈J . Then,

we rewrite the structural constraints as:

sup
g∈G

EF [ψ(U ; θ, v, g)] = 0

We consider the following moment conditions for estimation:

Eνθf [p(j|x, ξ)] = P0(j|x) ∀ (j, x) ∈ J × X

4The Lagrange multiplier function converts the continuum of conditional moment restrictions into a
single unconditional moment restriction (see for example Andrews and Shi (2013) and Schennach (2014)).

5For example, if V is the class of square integrable functions, G is the class of square integrable functions.
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We assume X has discrete support, and rewrite the moment conditions as:

EF [m(U ; v)] = P0

where m(U ; v) stacks the model-implied CCPs, and P0 stacks the population CCPs.

Then, the lower bound on the elasticity is given by:

inf
θf∈Θf

inf
(θ,v,F )∈Θ×V×Fθf

EνθfEx
ï
∂p(j|x, ξ)

∂xl

xl
P0(j|x)

ò
s.t. EF [m(U ; v)] = P0

sup
g∈G

EF [ψ(U ; θ, v, g)] = 0

In the next section, we will discuss the implementation for a fixed θf . The overall lower

bound requires an additional optimization over θf ∈ Θf . In practice, we can discretize the

estimated AR(1) process, and scale the grid points according to the candidate θf during

the optimization. Then, the optimization over θf can be implemented using the algorithm

proposed in Section 6.2.

Example 2 (Finite Horizon Dynamic Discrete Choice Models). This example considers a

finite-horizon DDC model where the latent variable ξ ∈ Ξ (e.g., labor supply shocks) follows

a first-order stationary Markov process. The conditional value function vt ∈ V at time period

t ≤ T < +∞ solves the smoothed Bellman equation: for ∀ (xt, ξt, j) ∈ X × Ξ× J ,

vjt(xt, ξt) = uj(xt, ξt; θ) + βEξt+1|ξtExt+1|xt,j

[
log

(∑
j′∈J

exp(vjt+1(xt+1, ξt+1))

)]
+ βγ (2)

where x ∈ X is the observable state variable, β ∈ (0, 1) is the discount factor, γ is the

Euler constant, uj(x, ξ; θ) is the period utility parameterized by θ ∈ Θ, and vjT (xT , ξT ) =

uj(xT , ξT ; θ). The model-implied CCP is pt(j|x, ξ) =
exp(vjt(x,ξ))∑

j′∈J exp(vj′t(x,ξ))
.

Let U := (ξ, ξ′) be a vector of current and future latent variables. In practice, we may set

the reference distribution as the estimated distribution from a parametric model, such as an

AR(1) process. The reference distribution F0 is the product of the conditional distribution

and its stationary distribution, ν0. The perturbation set is defined as:

F := {F ∈ P(U) | F ∈ Π(ν0, ν0), DKL(F‖F0) ≤ δ}

Suppose the scalar parameter of interest is the consumer surplus derived from the choice set
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J at period t:

Eν0Ext

[
1

α
log

(∑
j∈J

exp(vjt(xt, ξt))

)]
where we assume uj(xt, ξt; θ) is linear in price and α is the price coefficient.

We convert the smoothed Bellman equation (2) into restrictions that depend on the joint

distribution F ∈ F . We assume there exists a class of Lagrange multiplier functions G such

that for each t ≤ T − 1, vt solves (2) if and only if:

sup
gt∈G

EFExt,jt,xt+1

[
gjt(xt, ξt)

×
(
vjt(xt, ξt)− ujt(xt, ξt; θ)− β log

(∑
j′∈J

exp(vj′t+1(xt+1, ξt+1))

)
− βγ

)]
= 0

where (ξt, ξt+1) ∼ F , (xt, jt) is distributed according to the observed data at time t, and

xt+1 follows the conditional distribution given (xt, jt). Let g := (gjt)j∈J ,t≤T−1 and v :=

(vjt)j∈J ,t≤T−1. Then, we rewrite the structural constraints as:

sup
g∈G

EF [ψ(U ; θ, v, g)] = 0

where ψ is the sum of the objective functions in the above equation for each t ≤ T − 1.

We consider the following moment conditions for estimation: for each t ≤ T ,

Eν0 [pt(j|xt, ξ)] = P0t(j|xt) ∀ (j, xt) ∈ J × X

where P0t(j|xt) is the population CCP at period t. We assume X has discrete support, and

rewrite the moment conditions as:

EF [m(U ; v)] = P0

where m(U ; v) and P0 stack the model-implied and population CCPs for all t ≤ T .

Then, the lower bound on consumer surplus at period t is given by:

inf
(θ,v,F )∈Θ×V×F

Eν0Ext

[
1

α
log

(∑
j∈J

exp(vjt(xt, ξt))

)]
s.t. EF [m(U ; v)] = P0

sup
g∈G

EF [ψ(U ; θ, v, g)] = 0
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2.3 Framework and Duality

We now present a general framework that nests the above examples. In general, the model is

not point-identified when F is not a singleton.6 Therefore, we propose to compute upper and

lower bounds on the outcome of interest. Let the scalar parameter of interest, s : U×Θ×V →
R, be a function of the latent variable U , and the model primitives (θ, v) ∈ Θ×V . The lower

bound is the solution to the following optimization problem:

κ(δ, P ) := inf
(θ,v,F )∈Θ×V×F

EF [s(U ; θ, v)]

s.t. EF [m(U ; θ, v)] = P (Primal)

sup
g∈G

EF [ψ(U ; θ, v, g)] = 0

where F := {F ∈ P(U) | F ∈ Π(ν1, · · · , νk), DKL(F‖F0) ≤ δ}.

The first constraint is a moment condition where the moment function m : U ×Θ×V →
RdP is finite-dimensional as we assume the observable variable X ∈ X has discrete support

and stack the moment functions for each x ∈ X . The second constraint is a structural

constraint defined by ψ : U × Θ × V × G → R that is linear in the Lagrange multiplier

function g ∈ G for a given (θ, v). Finally, v ∈ V is the solution to the structural constraint.

Remark 2. (i) The upper bound can be obtained by replacing s(U ; θ, v) with −s(U ; θ, v).

(ii) The moment condition can contain restrictions linear in F , e.g., covariance restrictions.

(iii) If some model primitives (e.g., a subvector of θ) are point-identified, they are treated

as fixed values rather than optimized over.

(iv) The framework can also be applied to models without structural constraints, such as

static and panel discrete choice models.

The Primal problem can be intractable due to the optimization over F . First, the proper-

ties (e.g., closed-form and smoothness) of the optimal F ∗ are typically unknown, complicat-

ing the choice of approximation methods. Second, the marginal distribution conditions are

functional constraints imposed directly on the distribution being optimized, which are com-

putationally difficult to impose. Third, expectations are taken with respect to the perturbed

distribution, making numerical integration difficult.

To overcome these issues, we derive the Dual problem corresponding to the Primal. The

Dual provides the closed-form of the optimal F ∗, and characterizes its smoothness. Moreover,

6For example, see Schennach (2014); Molinari (2020).
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in the dual, the expectation is taken with respect to the reference distribution F0. Section 6.2

proposes a computationally tractable algorithm that utilizes the optimal F ∗. To motivate

the duality, consider the Lagrangian of the Primal:

κ(δ, P ) = inf
(θ,v)∈Θ×V

F∈Π(ν1,...,νk)

sup
λ∈RdP

λKL≥0,g∈G

EF [c(U ; θ, v, g, λ)] + λKL(DKL(F‖F0)− δ)− λTP (3)

where c(U ; θ, v, g, λ) := s(U ; θ, v) + λTm(U ; θ, v) + ψ(U ; θ, v, g), λ ∈ RdP is the Lagrange

multiplier for the moment condition and λKL is the Lagrange multiplier for the KL divergence

constraint. For given (θ, v), under regularity conditions, we can swap the order of the infimum

over F and the supremum over (λ, λKL, g). Then, we can rewrite (3) as:

inf
(θ,v)∈Θ×V

sup
λ∈RdP

λKL≥0,g∈G

inf
F∈Π(ν1,...,νk)

EF [c(U ; θ, v, g, λ)] + λKLDKL(F‖F0)− λKLδ − λTP

The inner infimum is the Entropic Optimal Transport (EOT) problem (for λKL > 0)7:

C(θ, v, g, λ, λKL) := inf
F∈Π(ν1,··· ,νk)

EF [c(U ; θ, v, g, λ)] + λKLDKL(F‖F0)

where c(U ; θ, v, g, λ) is the cost function, and C(θ, v, g, λ, λKL) is called the optimal EOT

value. The EOT problem is computationally fast to solve using the Sinkhorn algorithm,

which relies on the duality of the EOT problem. Moreover, the closed-form and smoothness

of the unique solution F ∗ to the EOT problem can be derived from its duality (see Theo-

rem 1 and Proposition 1). Section 6.1 reviews the EOT duality and the Sinkhorn algorithm.

Next, we impose assumptions for the minimax theorem to swap the order of infimum and

supremum, and the EOT duality to hold:

Assumption 1. We assume:

(i) The marginals {νi}ki=1 have finite p-th moment for some integer p ≥ 1.

(ii) F0 � F⊗ := ⊗ki=1νi, and let ρ(U) := log dF⊗(U)
dF0(U)

.

(iii) G is convex and symmetric, i.e., for g1, g2 ∈ G, ηg1 + (1 − η)g2 ∈ G for ∀ η ∈ [0, 1],

and −g ∈ G if g ∈ G. Moreover, if g ∈ G, then ηg ∈ G for ∀ η ≥ 0.

(iv) For ∀ (θ, v, g) ∈ Θ × V × G, it holds that ρ(U), s(U ; θ, v),m(U ; θ, v), ψ(U ; θ, v, g) are

lower semicontinuous in U .
7See Nutz (2021) for a comprehensive introduction to the EOT problem. The EOT problem has close

connection to the static Schrödinger Bridge problem. It is called the Optimal Transport (OT) problem when
λKL = 0 (see Villani et al. (2009)). The optimal value is called the optimal OT value.
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(v) For ∀ (θ, v, g) ∈ Θ×V ×G, there exist a finite positive constant Cθ,v,g and Û ∈ U such

that for ∀ U ∈ U , it holds that |ρ(U)| + |s(U ; θ, v)| + ‖m(U ; θ, v)‖1 + |ψ(U ; θ, v, g)| ≤
Cθ,v,g(1 + d(U, Û)) where d(U, Û) :=

∑k
i=1 di(Ui, Ûi)

p and di is a metric on Ui.

Assumptions 1(i)-1(iv) are mild. Assumption 1(iv) holds for indicator functions. There is

no particular necessity to write ρ(U) in log-density form in Assumption 1(ii). Our notation

is chosen to simplify the expression in Assumptions 1(iv) and 1(v). Assumption 1(v) imposes

the growth rate condition. It is satisfied for all Examples in Section 2.2 if we assume u, g,

and v satisfy the growth rate condition. It ensures that c(U ; θ, v, g, λ) ∈ L1(F ) for ∀ F ∈ F ,

and can also be used to show the convergence of the Sinkhorn algorithm and the convergence

of optimal EOT value to optimal OT value as λKL ↓ 0 (Eckstein and Nutz (2022, 2024)).8

Theorem 1. Let c(U ; θ, v, g, λ) := s(U ; θ, v) + λTm(U ; θ, v) + ψ(U ; θ, v, g) where λ ∈ RdP .

Under Assumption 1, the following holds:

(i) (Minimax Duality)

κ(δ, P ) = inf
(θ,v)∈Θ×V

sup
λ∈RdP ,λKL≥0,g∈G

C(θ, v, g, λ, λKL)− λKLδ − λTP (Dual)

where C(θ, v, g, λ, λKL) is the EOT problem with regularization parameter λKL:

C(θ, v, g, λ, λKL) := inf
F∈Π(ν1,··· ,νk)

EF [c(U ; θ, v, g, λ)] + λKLDKL(F‖F0)

(ii) (Entropic Optimal Transport Duality) For λKL > 0, we have:9

C(θ, v, g, λ, λKL) = sup
{φi∈L1(νi)}ki=1

k∑
i=1

Eνiφi(Ui)−λKLEF0 exp

Ç∑k
i=1 φi(Ui)− c(U ; θ, v, g, λ)

λKL

å
+λKL

Moreover, there are unique maximizers {φ∗i }
k
i=1 up to additive constants F0-almost

surely, and the unique worst-case distribution F ∗ has the density of the form:

dF ∗(U)

dF0(U)
= exp(

∑k
i=1 φ

∗
i (Ui)− c(U ; θ, v, g, λ)

λKL
) F0-a.s.

Furthermore, we have C(θ, v, g, λ, λKL) =
∑k

i=1 Eνiφ∗i (Ui).

8For the convergence of optimal EOT value to optimal OT value, lower semicontinuity alone is not
sufficient (Nutz (2021) Example 5.1). A sufficient condition is the continuity condition on the cost function.

9See Villani (2021) for optimal transport duality (λKL = 0).
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(iii) If the lower semicontinuity in Assumption 1(iv) is strengthened to continuity, then

optimizing over λKL > 0 is equivalent to optimizing over λKL ≥ 0.

Theorem 1 establishes the duality and provides the closed-form of F ∗. φi is the test

function for the marginal distribution condition νi for i = 1, · · · , k. The optimal {φ∗i }
k
i=1 are

the optimal EOT potentials, which can be efficiently obtained using the Sinkhorn algorithm.

The Dual is computationally tractable. First, it provides the closed-form of the worst-

case distribution F ∗, which can be used in the Primal problem even if we want to solve it

directly. In Section 6.2, we propose an iterative algorithm that alternates between solving

the EOT to obtain the worst-case distribution and updating v by solving the structural

constraint with the worst-case distribution. Second, for given (θ, v, g, λ, λKL), the optimal

{φ∗i }
k
i=1 (and thus F ∗) can be efficiently computed using the Sinkhorn algorithm, which is

computationally very fast. Third, the expectations in the Dual are taken with respect to

the marginal distributions and the reference distribution. Therefore, numerical integration

methods can be determined in advance. Finally, we have:

Proposition 1. If c(U ; θ, v, g, λ) is k-times continuously differentiable in U , and λKL > 0,

then {φ∗i }
k
i=1 are k-times continuously differentiable in Ui. Therefore, dF ∗(U)

dF0(U)
is also k-times

continuously differentiable in U .

Proposition 1 shows the smoothness of {φ∗i }
k
i=1 for λKL > 0 (the EOT case). For λKL = 0

(the OT case), it is not straightforward to obtain the smoothness of the worst-case distribu-

tion (see Villani et al. (2009) Chapter 12).

2.4 Perturbation of Stationary Distribution

This section discusses how to perturb the stationary distribution in the time-homogeneous

setting. We consider the serial dependence of the latent variables, as detailed in the example

in Section 2.1. Let U := (ξ, ξ′) be the vector of current and future latent variables. We define

the perturbation set for the stationary distribution as N = {ν ∈ P(Ξ) | DKL(ν‖ν0) ≤ δ1}
where δ1 ≥ 0. The perturbation set for the joint distribution is:

F :=
{
F ∈ P(Ξ2) | F ∈ Π(ν, ν), ν ∈ N , DKL(F‖F0) ≤ δ

}
Let κstationary(δ1, δ, P ) denote the lower bound on the scalar parameter of interest under this

perturbation set. Under regularity conditions, we can swap the order of infimum over F and
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the supremum over (λ, λKL, g):

κstationary(δ1, δ, P ) = inf
(θ,v)∈Θ×V

sup
λ∈RdP ,λKL≥0,g∈G

inf
ν∈N

C(θ, v, g, λ, λKL, ν)− λKLδ − λTP

where C(θ, v, g, λ, λKL, ν) is the EOT problem with respect to the perturbed stationary

distribution ν: C(θ, v, g, λ, λKL, ν) := infF∈Π(ν,ν) EF [c(ξ, ξ′; θ, v, g, λ)] + λKLDKL(F‖F0). Its

dual formulation is:

C(θ, v, g, λ, λKL, ν) = sup
φ1,φ2∈L1(ν)

Eν [φ1(ξ) + φ2(ξ′)]−λKLEF0 exp

Å
φ1(ξ) + φ2(ξ′)− c(ξ, ξ′; θ, v, g, λ)

λKL

ã
+λKL

Under regularity conditions, we can swap the order of infimum over ν and the supremum

over (φ1, φ2). Then, the inner infimum over ν is:

inf
ν∈N

Eν [φ1(ξ) + φ2(ξ′)]

which is a KL-divergence distributionally robust optimization problem (see Hu and Hong

(2013); Rahimian and Mehrotra (2019)) whose dual formulation is:

sup
η≥0
−η logEν0 exp

Å
−φ1(ξ) + φ2(ξ′)

η

ã
− ηδ1

where η is the Lagrange multiplier for the KL divergence constraint for ν. To summarize:

Theorem 2. Suppose Assumption 1 holds for any ν ∈ N , and Ξ is compact. Then, we have:

κstationary(δ1, δ, P ) = inf
(θ,v)∈Θ×V

sup
λ∈RdP ,η≥0
λKL≥0,g∈G
φ1,φ2∈L∞(Ξ)
φ1,φ2 l.s.c.

−η logEν0 exp

Å
−φ1(ξ) + φ2(ξ′)

η

ã
− ηδ1 + λKL − λKLδ − λTP

− λKLEF0 exp

Å
φ1(ξ) + φ2(ξ′)− c(ξ, ξ′; θ, v, g, λ)

λKL

ã
Theorem 2 shows the dual formulation when the stationary distribution is perturbed.

Although the Sinkhorn algorithm does not apply directly, we can sequentially update (φ1, φ2)

using the first-order optimality conditions like the Sinkhorn algorithm (see Section 6.1 for a

review of the Sinkhorn algorithm).
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3 Methodology for Time-Inhomogeneous Models

This section extends our framework to the time-inhomogeneous setting. We begin by defining

the perturbation set for these models in Section 3.1. Section 3.2 provides an example of a

finite-horizon dynamic discrete choice model. Section 3.3 presents the duality result. Finally,

Section 3.4 discusses how to perturb the initial distribution.

3.1 Definition of Perturbation Set

Consider a sequence of latent variables over a finite horizon, U := (ξ1, ξ2, · · · , ξT ), that

follows a first-order Markov chain. The reference joint distribution is the product of an

initial distribution and transition kernels:

dF0(U) = ν1(dξ1)F1(dξ2|ξ1) · · ·FT−1(dξT |ξT−1)

where ν1(dξ1) is the initial distribution, and Ft(dξt+1|ξt) is the transition kernel from period

t to t+ 1. Let νT (dξT ) be the terminal distribution implied by this process.

We consider perturbing the reference distribution while holding its initial and terminal

distributions fixed, i.e.,

FMarkov := {F ∈ P(U) | F ∈ ΠMarkov(ν1, νT ), DKL(F‖F0) ≤ δ}

where ΠMarkov(ν1, νT ) is the set of all joint distributions over U that satisfy the first-order

Markov property10 and have ν1 and νT as their initial and terminal marginal distributions.

Our perturbation set allows for any transition dynamics of the latent variables between the

initial and terminal periods, as long as the overall process remains Markovian and the initial

and terminal distributions are fixed.

We will discuss how to perturb the initial distribution in Section 3.4. The terminal

distribution can often be nonparametrically identified; therefore, we fix it. For instance, in

a finite horizon DDC model, the terminal period is a static discrete choice problem where

the distribution of the latent variable can be identified (Lewbel (2000); Matzkin (2007)).

Moreover, if ξt is the market-level latent variable, and the model has the finite dependence

property (see Arcidiacono and Miller (2011))11, then the utility parameters can be identified

without a distributional assumption for the latent variables (see Kalouptsidi et al. (2021c)),

10That is, for any t ≤ T − 1, F (dξt+1|ξ1, · · · , ξt) = F (dξt+1|ξt) almost surely under F .
11For example, a model with a terminating action has the finite dependence property.
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which in turn identifies the terminal distribution.

3.2 Example

Example 3 (Finite Horizon DDC with Time-Inhomogeneous Transition of Latent Vari-

ables). This example considers a time-inhomogeneous transition for the latent variables,

U := (ξ1, ξ2, · · · , ξT ), whose perturbation set is FMarkov. The model is similar to Example 2

but with a time-inhomogeneous transition.

We convert the smoothed Bellman equation (2) into restrictions that depend on the

sequence of two-period marginal distributions {Ft,t+1}T−1
t=1 , where:

dFt,t+1(ξt, ξt+1) =

∫
ξ1,...,ξt−1,ξt+2,...,ξT

dF (ξ1, . . . , ξT )

We assume there exists a class of Lagrange multiplier functions G such that for each t ≤ T−1,

vjt solves (2) if and only if:

sup
gt∈G

EFt,t+1Ext,jt,xt+1

[
gjt(xt, ξt)

×
(
vjt(xt, ξt)− ujt(xt, ξt; θ)− β log

(∑
j′∈J

exp(vj′t+1(xt+1, ξt+1))

)
− βγ

)]
= 0

where (ξt, ξt+1) ∼ Ft,t+1, and (xt, jt) is distributed according to the observed data at time

t, and xt+1 follows the conditional distribution given (xt, jt). Let g := (gjt)j∈J ,t≤T−1 and

v := (vjt)j∈J ,t≤T−1. We then rewrite the structural constraints as:

sup
g∈G

EF [ψ(U ; θ, v, g)] = 0

where ψ is the sum over t ≤ T − 1 of terms inside the expectation of the previous equation.

Then, the lower bound on consumer surplus at period t is given by:

inf
(θ,v,F )∈Θ×V×FMarkov

EνtExt

[
1

α
log

(∑
j∈J

exp(vjt(xt, ξt))

)]
s.t. EF [m(U ; θ, v)] = P0

sup
g∈G

EF [ψ(U ; θ, v, g)] = 0

where νt is the marginal distribution of ξt implied by F .
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3.3 Framework and Duality

The bound for the time-inhomogeneous case, κTI(δ, P ), is defined similarly to the time-

homogeneous case, but with the optimization performed over FMarkov:

κTI(δ, P ) := inf
(θ,v,F )∈Θ×V×FMarkov

EF [s(U ; θ, v)]

s.t. EF [m(U ; θ, v)] = P (TI)

sup
g∈G

EF [ψ(U ; θ, v, g)] = 0

where “TI” stands for time-inhomogeneous. To solve TI, we follow the procedure in Theo-

rem 1. However, the set FMarkov is not necessarily convex, which prevents the proof strategy

of the minimax duality in Theorem 1 from being applied directly. Therefore, we propose to

solve a relaxed problem where the Markov property condition is removed. We then show

that, under certain reasonable conditions, the solution to the relaxed problem is Markovian,

thereby also solving the original problem. The perturbation set for the relaxed problem is

defined as:

Frelaxed := {F ∈ P(U) | F ∈ Π(ν1, νT ), DKL(F‖F0) ≤ δ}

where Π(ν1, νT ) is the set of joint distributions with initial distribution ν1 and terminal

distribution νT . The relaxed problem is given by:

κ̃TI(δ, P ) := inf
(θ,v,F )∈Θ×V×Frelaxed

EF [s(U ; θ, v)]

s.t. EF [m(U ; θ, v)] = P (Relaxed)

sup
g∈G

EF [ψ(U ; θ, v, g)] = 0

whose Lagrangian is:

κ̃TI(δ, P ) = inf
(θ,v)∈Θ×V
F∈Π(ν1,νT )

sup
λ∈RdP

λKL≥0,g∈G

EF [c(U ; θ, v, g, λ)] + λKL(DKL(F‖F0)− δ)− λTP (4)

where c(U ; θ, v, g, λ) := s(U ; θ, v) + λTm(U ; θ, v) + ψ(U ; θ, v, g), λ ∈ RdP is the Lagrange

multiplier for the moment condition and λKL is the Lagrange multiplier for the KL divergence

constraint. For given (θ, v), under regularity conditions, we can swap the order of the infimum

over F and the supremum over (λ, λKL, g). Then, we can rewrite (4) as:

inf
(θ,v)∈Θ×V

sup
λ∈RdP

λKL≥0,g∈G

inf
F∈Π(ν1,νT )

EF [c(U ; θ, v, g, λ)] + λKLDKL(F‖F0)− λKLδ − λTP

19



The inner infimum is:

CTI(θ, v, g, λ, λKL) := inf
F∈Π(ν1,νT )

EF [c(U ; θ, v, g, λ)] + λKLDKL(F‖F0)

which can be rewritten as the discrete-time dynamic Schrödinger Bridge (SB) problem (see

Léonard (2013); De Bortoli et al. (2021)). Because it only restricts the initial and terminal

distributions, we can decompose it into two parts: the two-period marginal distribution part

(the first and last period) and the conditional distribution part (the intermediate variables

conditional on the first and last period). The second part is unconstrained, thereby having

a closed-form solution. The first part is the static SB (or EOT) problem whose duality

is similar to Theorem 1. We impose the following assumptions for the minimax duality,

decomposition, static SB duality, and the Markov property:

Assumption 2. Let dF 1,T
0 (ξ1, ξT ) :=

∫
ξ2,...,ξT−1

dF0(ξ1, ξ2, . . . , ξT ) be the two-period marginal

of F0 at periods 1 and T . We assume:

(i) U is compact.

(ii) F 1,T
0 ∼ ν1 ⊗ νT , i.e., F 1,T

0 and ν1 ⊗ νT are mutually absolutely continuous. Moreover,

log d(ν1⊗νT )

dF 1,T
0

∈ L1(ν1 ⊗ νT ).

(iii) For ∀ (θ, v, g) ∈ Θ×V×G, it holds that |s(U ; θ, v)|+‖m(U ; θ, v)‖1+|ψ(U ; θ, v, g)| <∞.

(iv) The functionals s(U ; θ, v), m(U ; θ, v), and ψ(U ; θ, v, g) are pairwise additive, i.e.,

s(U ; θ, v) =
∑T−1

t=1 st(ξt, ξt+1; θ, vt, vt+1), m(U ; θ, v) =
∑T−1

t=1 mt(ξt, ξt+1; θ, vt, vt+1), and

ψ(U ; θ, v, g) =
∑T−1

t=1 ψt(ξt, ξt+1; θ, vt, vt+1, gt, gt+1) for some functions st, mt, and ψt.

The boundedness condition in Assumption 2(iii) is stronger than Assumption 1(v), which

does not guarantee that c(U ; θ, v, g, λ) ∈ L1(F ) for any F ∈ Frelaxed. Assumption 2(ii) is a

sufficient condition for the SB duality to hold. Finally, Assumption 2(iv) is the key to the

Markov property of the solution to the Relaxed problem, and is satisfied in Example 3. It

does not hold if the moment function depends on the entire path of the latent variables.

Theorem 3. Let c(U ; θ, v, g, λ) := s(U ; θ, v) + λTm(U ; θ, v) + ψ(U ; θ, v, g) where λ ∈ RdP .

Under Assumptions 1(i), 1(iii), 1(iv), and 2, the following holds:

(i) (Minimax Duality)

κ̃TI(δ, P ) = inf
(θ,v)∈Θ×V

sup
λ∈RdP ,λKL≥0,g∈G

CTI(θ, v, g, λ, λKL)− λKLδ − λTP
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where CTI(θ, v, g, λ, λKL) is defined as:

CTI(θ, v, g, λ, λKL) := inf
F∈Π(ν1,νT )

EF [c(U ; θ, v, g, λ)] + λKLDKL(F‖F0) (Sdyn)

(ii) For λKL > 0, the unique worst-case distribution to Sdyn has the density of the form:

dF ∗(U)

dF0(U)
= exp

Å
φ∗1(ξ1) + φ∗T (ξT )− c(U ; θ, v, g, λ)

λKL

ã
where φ∗1(ξ1) and φ∗T (ξT ) are the unique maximizers (up to an additive constant) to:

sup
φ1∈L1(ν1),φT∈L1(νT )

Eν1φ1(ξ1) + EνTφT (ξT )− λKLER1,T
exp

Å
φ1(ξ1) + φT (ξT )

λKL

ã
+ λKL

where the auxiliary reference measure R1,T is defined as:

dR1,T (ξ1, ξT ) :=

∫
ξ2,...,ξT−1

exp

Å−c(U ; θ, v, g, λ)

λKL

ã
dF0(ξ1, . . . , ξT )

Furthermore, the solution F ∗ has the Markov property, i.e., F ∗ ∈ ΠMarkov(ν1, νT ).

(iii) (Equivalence) Suppose there exists an optimal λ∗KL > 0, then: κTI(δ, P ) = κ̃TI(δ, P ).

Theorem 3 shows the duality for the Relaxed problem. The difference between Theo-

rem 3(i) and Theorem 1(i) is that (Sdyn) does not fix the intermediate marginal distributions.

Therefore, we can decompose (Sdyn) into the sum of two-period marginal distribution (F 1,T
0 )

part, and the conditional distribution (the distribution of (ξ2, · · · , ξT−1) given ξ1 and ξT )

part. The latter part is an unconstrained optimization problem, thereby having a closed-form

solution. The first part is the static SB problem, whose duality is given by Theorem 3(ii).

Assumption 2(iv) is crucial for the solution to have the Markov property. Under this

assumption, the cost function c(U ; θ, v, g, λ) is also pairwise additive. Therefore, the density

ratio in Theorem 3(ii) has the Markov property.12 If there exists one optimal λ∗KL > 0, then

the TI problem is equivalent to the Relaxed problem.

The Relaxed problem can also be solved using the iterative algorithm proposed in Sec-

tion 6.2. There is an additional step to obtain the two-period auxiliary reference distribution

R1,T . The Sdyn can also be solved using the Sinkhorn algorithm.

12It can be treated as the (unnormalized) pairwise Markov random field Wainwright et al. (2008).
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3.4 Perturbation of Initial Distribution

Let N be a convex closed set around the initial distribution ν1, e.g., N = {ν ∈ P(Ξ) |
DKL(ν‖ν1) ≤ δ1} where δ1 ≥ 0. Then, the perturbation set is defined as:

FN ,Relaxed := {F ∈ P(U) | F ∈ Π(ν, νT ), ν ∈ N , DKL(F‖F0) ≤ δ}

Let κ̃TI,Initial(δ, P ) be the lower bound on the scalar parameter for the Relaxed problem with

the perturbation set FN ,Relaxed. The following minimax duality similar to Theorem 3 holds:

Theorem 4 (Minimax Duality with Perturbation of Initial Distribution). Suppose N is

convex and closed, and that the assumptions in Theorem 3 hold for each ν ∈ N . Then,

κ̃TI,Initial(δ, P ) = inf
(θ,v)∈Θ×V

sup
λ∈RdP ,λKL≥0,g∈G

CTI(θ, v, g, λ, λKL)− λKLδ − λTP

where CTI(θ, v, g, λ, λKL) is defined as follows:

CTI,Initial(θ, v, g, λ, λKL) := inf
ν∈N

inf
F∈Π(ν,νT )

EF [c(U ; θ, v, g, λ)] + λKLDKL(F‖F0) (5)

To solve (5), as shown in the proof of Theorem 3(ii) and Section 3.3, we can decompose

the problem into two parts: the two-period marginal distribution part, and the conditional

distribution part. The first part requires solving:

inf
ν∈N

inf
F1,T∈Π̃(ν,νT )

EF1,T
[DKL(F1,T‖R1,T )]

where Π̃(ν, νT ) is the set of distributions of (ξ1, ξT ) whose marginal distributions are ν and

νT , respectively. It is equivalent to solving:

inf
ν∈N

inf
F1,T∈Π̃(ν,νT )

EF1,T

ï
log

Å
d(ν ⊗ νT )

dR1,T

ãò
+DKL(F1,T‖ν ⊗ νT )

The inner infimum is an EOT problem. Let EOT(ν, νT ) be its optimal value.

Lemma 1. Under the assumptions in Theorem 4, EOT(ν, νT ) is convex in ν. Its directional

derivative with respect to ν in the direction ν ′ is given by:

lim
ε↓0

EOT(ν + ε(ν ′ − ν), νT )− EOT(ν, νT )

ε
=

∫
φ∗d(ν ′ − ν)

where φ∗ is the optimal EOT potential for ν.
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Lemma 1 shows that (5) is a convex optimization problem with respect to ν. Moreover,

φ∗ is a result of the Sinkhorn algorithm, which can be used to search the optimal ν efficiently.

4 Large Sample Properties

This section establishes the large sample properties of the estimator for the bound. Sec-

tion 4.1 proposes a consistent estimator and shows its convergence rate. Section 4.2 estab-

lishes the asymptotic distribution of the plug-in estimator for the bound.

4.1 Consistency and Convergence Rate

The bound on the scalar parameter is the projection of the identified set defined by the

moment conditions and structural constraints onto the scalar parameter. We follow Cher-

nozhukov et al. (2007) to propose an estimator for the identified set and show its consistency

and convergence rate. Let Pn be an estimator for P0 where n is the sample size. Denote by

εn ∈ R+ the tolerance level for the moment conditions that goes to zero at a suitable rate as

n → ∞. Our estimators κ(δ, Pn, εn), and κ̃TI(δ, Pn, εn) for the bounds replace the moment

conditions by the approximate moment conditions.13

Assumption 3. Let A be either Θ×F or Θ×Frelaxed, and α := (θ, F ) ∈ A. Assume:

(i) Θ ⊆ Rdθ is convex and compact.

(ii) If A = Θ×Frelaxed, then Assumption 2(i) holds.

(iii) For ∀ α ∈ A, the structural constraint F -a.s. has a unique solution v(α) ∈ V.

(iv) The identified set AI := {α ∈ A | EF [m(U ; θ, v(α))] = P0} is nonempty.

(v) EF [m(U ; θ, v(α))] is continuous in α ∈ A, i.e., the preimages of closed sets are closed.

Assumption 3(i) is mild. Assumption 3(iii) holds in single-agent DDC models. It rules

out dynamic games with multiple equilibria. Assumption 3(iv) is also mild as the identified

set for θ is usually nonempty under the reference distribution F0. Moreover, if the identified

set for δ = +∞14 is nonempty, then Assumption 3(iv) implicitly assumes the radius δ is large

13To compute the estimator, the number of moment conditions is doubled due to the use of approximate
moment conditions. The duality is similar to Theorems 1 and 3, thus is omitted for brevity.

14In this case, the KL divergence constraint is replaced by the absolute continuity constraint, i.e., F � F0.
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enough. The smallest radius such that the identified set is nonempty can be estimated (see

Remark 4). Assumption 3(v) implies that the identified set and its estimator are compact

as F is compact (see Lemma 8) and thus A is compact (see Lemma 2).

Under Assumption 3, the estimator for AI is defined as:

ÂI := {α ∈ A | ‖EF [m(U ; θ, v(α))]− Pn‖∞ ≤ εn}

The analysis of the consistency and convergence rate uses the Hausdorff Distance:

dH(A1,A2) := max

ß
sup
α1∈A1

d(α1,A2), sup
α2∈A2

d(α2,A1)

™
where d(α1,A1) := infα2∈A2 d(α1, α2) and d(α1, α2) is a metric on A.

Assumption 4. Assume Pn is a
√
n-consistent estimator for P0, and there exists cn such

that
√
n‖P0−Pn‖∞ ≤ cn with probability approaching 1 where cn can be data-dependent. Let

εn = cn√
n

, and assume εn
p−→ 0.

Assumption 4 is mild as we assumed the observable variable has discrete support, e.g.,

Pn can be the frequency estimator. In practice, we can set cn ∝ log n. Then, the convergence

rate in Theorem 5(ii) is
√
n-consistent up to a logarithmic factor. We show some properties

of the identified set and its estimator:

Lemma 2. Under Assumptions 3 and 4, AI , ÂI are closed and compact. Moreover, ÂI is

nonempty.

By the extreme value theorem, the infimum is achieved if the scalar parameter is contin-

uous on A, i.e., Assumption 6(i) holds. Therefore, the optimization problem has a solution.

Next, we impose the polynomial minorant condition as in Chernozhukov et al. (2007) for the

convergence rate of the estimator:

Assumption 5 (Polynomial Minorant Condition). There exists positive constants C1 and

C2 such that: ‖EF [m(U ; θ, v(α))]− P0‖∞ ≥ C1 min {C2, d(α,AI)}.

Theorem 5. Under Assumptions 3 and 4, we have:

(i) (Consistency) dH(ÂI ,AI) = op(1).

(ii) (Convergence Rate) Under Assumption 5, dH(ÂI ,AI) = Op(
max{1,cn}√

n
).

Theorem 5 establishes the
√
n-consistency up to a logarithmic factor (if cn ∝ log n).

Then, we impose the following continuity assumption on the scalar parameter of interest:

24



Assumption 6. Let s(α) := EF [s(U ; θ, v(α))], assume one of the following:

(i) s(α) is continuous in α ∈ A.

(ii) s(α) is Lipschitz continuous in α ∈ A.

Theorem 6. Under Assumptions 3 and 4, we have:

(i) (Consistency) Under Assumption 6(i), κ(δ, Pn, εn)
p−→ κ(δ, P0), and κ̃TI(δ, Pn, εn)

p−→
κ̃TI(δ, P0).

(ii) (Convergence Rate) Under Assumption 6(ii), |κ(δ, Pn, εn) − κ(δ, P0)| = Op(
max{1,cn}√

n
),

and |κ̃TI(δ, Pn, εn)− κ̃TI(δ, P0)| = Op(
max{1,cn}√

n
).

4.2 Asymptotic Distribution

This section establishes the asymptotic distribution of κ(δ, Pn) and κ̃TI(δ, Pn). To this end,

we first show the Hadamard directional differentiability of κ(δ, P ) and κ̃TI(δ, P ) with respect

to P at P0 similar to Christensen and Connault (2023). We begin with the definition of

Hadamard directional differentiability:

Definition 1. The map f : RdP → R is Hadamard directionally differentiable at P ∈ RdP ,

if there exists a continuous map f ′ : RdP → R such that for h ∈ RdP , we have:

lim
i→∞

f(P + tihi)− f(P )

ti
= f ′(P ;h)

for all sequences {hi} ⊆ RdP , ti ↓ 0, and hi → h ∈ RdP as i→∞.

Under Assumption 3, we can restate the optimization problem as:

inf
α∈A

s(α) s.t. P (α) = P0

where P (α) := EF [m(U ; θ, v(α))]. Moreover, the identified set AI is nonempty, which means

the feasible set for the optimization problem is nonempty. By Lemma 2, AI is compact.

Under Assumption 6(i), the Extreme Value Theorem (see Rudin et al. (1976) Theorem

4.16.) implies that the infimum is attained. Denote by A∗I,TH, A∗I,TI the nonempty sets of

optimizers for the problems κ(δ, P0) and κ̃TI(δ, P0), respectively.
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To establish Hadamard directional differentiability of κ(δ, P ) and κ̃TI(δ, P ) at P0, we

impose assumptions similar to those in Bonnans and Shapiro (2013) Theorem 4.25.15

Assumption 7. Assume s(α) and P (α) are continuously differentiable on A. That is, they

are Gâteaux differentiable on A and the corresponding derivatives Ds(α) and DP (α) are

continuous on A (in the operator norm topology).16

Assumption 8. Let A∗I be either A∗I,TH or A∗I,TI. Assume:

(i) 0 ∈ int{DP (α)(A− α)} for ∀ α ∈ A∗I .

(ii) For ∀ h ∈ RdP , it holds that for ∀ Pt := P0 + th + o(t) and t > 0 small enough, the

problem κ(δ, Pt) has an o(t)-optimal solution α(t) such that d(α(t),A∗I) = O(t).

(iii) For ∀ tn ↓ 0 the sequence {α(tn)} has a limit point (in the norm topology) α0 ∈ A∗I .

Theorem 7. Under Assumptions 3, 7, and 8, the maps κ(δ, P ) and κ̃TI(δ, P ) are Hadamard

directionally differentiable at P0 in any direction h ∈ RdP , and:

κ′(δ, P0;h) = inf
α∈A∗I,TH

sup
λ∈Λ(α,P0)

−λTh, κ̃′TI(δ, P0;h) = inf
α∈A∗I,TI

sup
λ∈Λ(α,P0)

−λTh

where Λ(α, P0) is the nonempty set of Lagrange multipliers corresponding to α ∈ A∗I .17

Moreover, if
√
n(Pn − P0)

d−→ Z ∼ N (0,Σ), then
√
n(κ(δ, Pn) − κ(δ, P0))

d−→ κ′(δ, P0;Z)

and
√
n(κ̃TI(δ, Pn)− κ̃TI(δ, P0))

d−→ κ̃′TI(δ, P0;Z).

Theorem 7 shows the asymptotic distribution of the bound’s estimator. To conduct

inference, we may follow the procedure in Fang and Santos (2019). In addition, the numerical

delta method Hong and Li (2018) combined with our practical implementation in Section 6

can be used to overcome the computational challenge.

5 Interpreting the Results

In practice, we can estimate an alternative (parametric) model and set the radius to be

the KL divergence between the alternative and the reference distribution. In addition, this

15We work on the primal problem to show the Hadamard directional differentiability, while Christensen
and Connault (2023) works on the dual problem (see their Theorem 6.2).

16For a given direction α1 ∈ A, the Gâteaux derivatives are understood as Ds(α)(α1−α) and DP (α)(α1−
α). See Bonnans and Shapiro (2013) Page 35 for the definition of Gâteaux derivative.

17See Bonnans and Shapiro (2013) Definition 3.8 and Theorem 3.9. Robinson’s constraint qualification is
satisfied under Assumptions 3, 7, and 8 (see Appendix B.4.4). Therefore, Λ(α∗, P0) is nonempty.
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section considers three complementary sensitivity measures to interpret the results: global

sensitivity, local sensitivity, and robustness metric.

5.1 Global Sensitivity

The global sensitivity18 approach progressively increases the radius until the bounds flatten.

We show that it provides a computationally tractable approximation to the nonparametric

bounds when the KL divergence constraint is removed. Moreover, we provide an explicit

upper bound on the approximation error. We focus on the time-homogeneous case, for

which the “nonparametric” perturbation set is:

F+∞ := Π(ν1, · · · , νk)

After applying the minimax duality, we need to solve the following problem:

inf
(θ,v)∈Θ×V

sup
λ∈RdP ,g∈G

inf
F∈Π(ν1,...,νk)

EF [c(U ; θ, v, g, λ)]− λTP

where the inner problem is an OT problem, which is computationally challenging in high-

dimensional settings. The EOT is a computationally tractable approximation to the OT

problem. Recall C(θ, v, g, λ, λKL) := infF∈Π(ν1,··· ,νk) EF [c(U ; θ, v, g, λ)] + λKLDKL(F‖F0).

Theorem 8 (Adapted from Eckstein and Nutz (2024) Theorem 3.1(i)). Suppose Assump-

tion 1 holds. Assume the marginals {νi}ki=1 have finite p+ η-th moment for some η > 0 and

integer p ≥ 1, and c(U ; θ, v, g, λ) satisfies the AL,C condition in Eckstein and Nutz (2024)

where L,C depend on (θ, v, g, λ). Let di be the dimension of Ui. Then, for any λKL ∈ (0, 1],

0 ≤ C(θ, v, g, λ, λKL)− C(θ, v, g, λ, 0) ≤

(
k∑
i=2

di

)
λKL log

Å
1

λKL

ã
+ (k − 1)

1
pLCλKL

Theorem 8 provides an explicit upper bound on the approximation error of C(θ, v, g, λ, λKL)

to C(θ, v, g, λ, 0). For DDC models, the constants L and C can be explicitly characterized

under additional conditions (see Eckstein and Nutz (2022) Lemma 3.5, and Eckstein and

Nutz (2024) Remark 2.1.) The upper bound strictly decreases to zero as λKL ↓ 0. Therefore,

we can choose a sufficiently small λKL (or sufficiently large δ) to achieve a desired accuracy

for the approximation. Our framework thus approximates the nonparametric bounds in a

18See Christensen and Connault (2023) Theorem 2.1 for similar results. However, their results are silent
about how large the radius should be so that the bounds are close to the nonparametric bounds.
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computationally tractable way with an explicitly quantifiable approximation error.

Remark 3. Under certain conditions, one can establish the convergence of the EOT worst-

case distribution to the OT worst-case distribution as the regularization parameter λKL ↓ 0.

Nutz (2021) Theorem 5.5 provides one sufficient condition: the existence of a solution F ∗ to

the OT problem such that DKL(F ∗‖F0) < +∞.

5.2 Local Sensitivity

The local sensitivity19 approach computes the right derivative of the bounds at δ = 0, which

measures the effect of a small perturbation of the reference distribution on the bounds. We

show the right differentiability of the bounds with respect to δ. Define:

ΠTH := {F ∈ P(U) | Π(ν0, · · · , νk), C3 ≤ dF ≤ C4, ‖dF‖Lip ≤ L}

ΠTI := {F ∈ P(U) | Π(ν0, νT ), C3 ≤ dF ≤ C4, ‖dF‖Lip ≤ L}

where ‖ · ‖Lip is the Lipschitz constant, and C3, C4, L are positive constants. We assume:

Assumption 9. Let AδI,Lip be either Aδ,LipI,TH or Aδ,LipI,TI defined as:

Aδ,LipI,TH := {α ∈ Θ× ΠTH | EF [m(U ; θ, v(α))] = P0, DKL(F‖F0) ≤ δ}

Aδ,LipI,TI := {α ∈ Θ× ΠTI | EF [m(U ; θ, v(α))] = P0, DKL(F‖F0) ≤ δ}

and Aδ,∗I,Lip be either Aδ,Lip,∗I,TH or Aδ,Lip,∗I,TI that are the sets of solutions to the optimization

problems κ(δ, P0) and κ̃TI(δ, P0) over Aδ,LipI,TH and Aδ,LipI,TI . Assume:

(i) δ∗ := inf{δ ≥ 0 | AδI,Lip 6= ∅} is finite.20

(ii) U is compact.

(iii) ‖dF0‖Lip ≤ L.

(iv) 0 ∈ int{DP (α)(Θ× Π− α)} for ∀ α ∈ Aδ,∗I,Lip.

(v) For ∀ δt := δ+t+o(t) and t > 0 small enough, the optimization problem corresponding

to δt has an o(t)-optimal solution α(t) such that d(α(t),Aδ,∗I,Lip) = O(t).

(vi) For ∀ tn ↓ 0 the sequence {α(tn)} has a limit point (in the norm topology) α0 ∈ Aδ,∗I,Lip.
19See Bartl et al. (2021) Theorem 2.2 and Christensen and Connault (2023) Page 276 for similar results.
20The smallest radius can be computed, see Remark 4.
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Theorem 9. Under Assumptions 3, 7, and 9, κ(δ, P0) and κ̃TI(δ, P0) are right differentiable

at δ ≥ δ∗ and their right derivatives are given by:

lim
ε↓0

κ(δ + ε, P0)− κ(δ, P0)

ε
= inf

α∈Aδ,Lip,∗I,TH

sup
λKL∈ΛKL(α,δ)

−λKL

lim
ε↓0

κ̃TI(δ + ε, P0)− κ̃TI(δ, P0)

ε
= inf

α∈Aδ,Lip,∗I,TI

sup
λKL∈ΛKL(α,δ)

−λKL

where ΛKL(α, δ) is the nonempty set of Lagrange multipliers corresponding to (α, δ).

Theorem 9 shows the right differentiability. We can also compute the derivative of the

length of the bounds. In practice, we may need to compute it numerically due to the

optimization over the set of optimizers and the Lagrange multipliers.

5.3 The Robustness Metric

The robustness metric is the smallest deviation from the reference distribution that can

lead to sensitive results (Spini (2024)). In practice, we begin by estimating a reference

scalar parameter, ŝF0 , under the reference distribution. If the perturbed scalar parameter

sF is below a certain threshold, e.g., s̄ = 0.95 · ŝF0 , then we may be concerned about the

robustness of the results. The robustness metric is defined as:

δ(s̄, P ) := inf
(θ,v,F )∈Θ×V×Π(ν1,··· ,νk)

DKL(F‖F0)

s.t. EF [m(U ; θ, v)] = P

EF [s(U ; θ, v)] ≤ s̄

sup
g∈G

EF [ψ(U ; θ, v, g)] = 0

δ̃TI(s̄, P ) := inf
(θ,v,F )∈Θ×V×Π(ν1,νT )

DKL(F‖F0)

s.t. EF [m(U ; θ, v)] = P

EF [s(U ; θ, v)] ≤ s̄

sup
g∈G

EF [ψ(U ; θ, v, g)] = 0

(6)

where s̄ ∈ R is a user-specified threshold. The optimization problem searches for a distri-

bution F in the identified set that results in EF [s(U ; θ, v)] ≤ s̄ and is the closest to the

reference distribution F0 in terms of KL divergence.

Remark 4. The δ∗ in Section 5 can be obtained by removing the constraint for s̄ in (6). That

is, we seek the smallest radius δ∗ such that the identified set is nonempty. See Schennach

(2014) Page 356 and Christensen and Connault (2023) Section 3.3 for similar definitions.

We can plot the bounds against δ and then find the radius corresponding to s̄. Alterna-

tively, we can compute it directly by solving (6) whose duality results are given by:
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Theorem 10. Let c(U ; θ, v, g, λ, λs) := λTm(U ; θ, v) + λss(U ; θ, v) + ψ(U ; θ, v, g) where λ ∈
RdP . Under Assumption 1, the following holds:

(i) (Minimax Duality)

δ(s̄, P ) = inf
(θ,v)∈Θ×V

sup
λ∈RdP ,λs≥0,g∈G

C(θ, v, g, λ, λs)− λTP − λss̄

where C(θ, v, g, λ, λs) is the EOT problem with regularization parameter 1:

C(θ, v, g, λ, λs) := inf
F∈Π(ν1,··· ,νk)

EF [c(U ; θ, v, g, λ, λs)] +DKL(F‖F0)

(ii) (Entropic Optimal Transport Duality) We have:

C(θ, v, g, λ, λs) = sup
{φi∈L1(νi)}ki=1

k∑
i=1

Eνiφi(Ui)−EF0 exp

(
k∑
i=1

φi(Ui)− c(U ; θ, v, g, λ, λs)

)
+1

Moreover, there are unique maximizers {φ∗i }
k
i=1 up to additive constants F0 almost

surely, and the unique worst-case distribution F ∗ has the density of the form:

dF ∗(U)

dF0(U)
= exp(

k∑
i=1

φ∗i (Ui)− c(U ; θ, v, g, λ, λs)) F0-a.s.

Theorem 11. Let c(U ; θ, v, g, λ, λs) := λTm(U ; θ, v) + λss(U ; θ, v) + ψ(U ; θ, v, g) where λ ∈
RdP . Under Assumptions 1(i), 1(iii), 1(iv), and 2, the following holds:

(i) (Minimax Duality)

δTI(s̄, P ) = inf
(θ,v)∈Θ×V

sup
λ∈RdP ,λs≥0,g∈G

CTI(θ, v, g, λ, λs)− λTP − λss̄

where CTI(θ, v, g, λ, λs) is defined as follows:

CTI(θ, v, g, λ, λs) := inf
F∈Π(ν1,νT )

EF [c(U ; θ, v, g, λ, λs)] +DKL(F‖F0) (7)

(ii) The unique worst-case distribution to (7) has the form:

dF ∗(U)

dF0(U)
= exp (φ∗1(ξ1) + φ∗T (ξT )− c(U ; θ, v, g, λ, λs))
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where φ∗1(ξ1) and φ∗T (ξT ) are the unique maximizers (up to an additive constant) to:

sup
φ1∈L1(ν1),φT∈L1(νT )

Eν1φ1(ξ1) + EνTφT (ξT )− ER1,T
exp (φ1(ξ1) + φT (ξT )) + 1

where the auxiliary reference measure R1,T is defined as:

dR1,T (ξ1, ξT ) :=

∫
ξ2,...,ξT−1

exp (−c(U ; θ, v, g, λ, λs)) dF0(ξ1, . . . , ξT )

Furthermore, the solution F ∗ has the Markov property, i.e., F ∗ ∈ ΠMarkov(ν1, νT ).

(iii) (Equivalence) δ̃TI(s̄, P ) = δTI(s̄, P ) where δTI(s̄, P ) is the optimal value of the opti-

mization problem in (6) for the time-inhomogeneous case with the first-order Markov

property constraint on F .

Theorem 11 provides the dual formulation for computing the smallest radius in the time-

inhomogeneous case. The equivalence holds as the regularization parameter is 1.

6 Practical Implementation

This section presents the practical implementation of the proposed framework. Section 6.1

reviews the entropic optimal transport problem and the Sinkhorn algorithm. Section 6.2

proposes a computationally feasible algorithm.

6.1 Entropic Optimal Transport and Sinkhorn Algorithm

This section reviews the Sinkhorn algorithm for the entropic optimal transport problem.21

Let (Ui, νi) for i = 1, . . . , k be probability spaces, where Ui is the support for the random

variable Ui. For a cost function c : U1 × · · · × Uk → R, the entropic optimal transport

problem22 with regularization parameter λKL > 0 is defined as:

CλKL := inf
F∈Π(ν1,...,νk)

EF [c(U1, . . . , Uk)] + λKLDKL(F‖F⊗) (EOT)

21See Sinkhorn and Knopp (1967), Cuturi (2013) and Nutz (2021).
22If F0 6= F⊗, then Lemma 12 reformulates the problem as the EOT problem.
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whose dual is given by:

CλKL = sup
{φi∈L1(νi)}ki=1

k∑
i=1

Eνiφi(Ui)−λKLEF⊗ exp

Ç∑k
i=1 φi(Ui)− c(U1, . . . , Uk)

λKL

å
+λKL (8)

where φi is the test function for the marginal distribution constraint νi. The dual problem

is a concave maximization problem over {φi}ki=1. The worst-case distribution is given by:

dF ∗(U)

dF⊗(U)
= exp

Ç∑k
i=1 φ

∗
i (Ui)− c(U1, . . . , Uk)

λKL

å
where the optimizers (φ∗1, . . . , φ

∗
k) are known as the optimal EOT potentials (also called

Schrödinger potentials), which are the solutions to the Schrödinger equation (SE):

φ1(U1) = −λKL log

Ç
EF⊗,−1 exp

Ç∑k
i=2 φi(Ui)− c(U1, . . . , Uk)

λKL

åå
ν1-a.s. (SE1)

...

φk(Uk) = −λKL log

Ç
EF⊗,−k exp

Ç∑k−1
i=1 φi(Ui)− c(U1, . . . , Uk)

λKL

åå
νk-a.s. (SEk)

where F⊗,−i is the product measure of all marginals except for the i-th marginal. The

Schrödinger equations (SE1) to (SEk) can be interpreted as the variational first-order con-

ditions for optimality (see Nutz (2021) Remark 3.4). Moreover, they also characterize the

marginal constraints. To see this, define:

dF (U) = exp

Ç∑k
i=1 φi(Ui)− c(U1, . . . , Uk)

λKL

å
dF⊗(U)

The marginal density can be obtained by integrating out the other marginals; therefore:

(SEi)⇔ the i-th marginal of F is νi

The Sinkhorn algorithm can be interpreted as a coordinate ascent scheme for the optimization

problem (8). It is a computationally fast23, iterative method for solving (SE1)-(SEk).

Algorithm 1 (Sinkhorn Algorithm). Initialize φ
(0)
i := 0 for i = 1, . . . , k. For iteration t,

23For its convergence rate, see Peyré et al. (2019), Carlier (2022), and Eckstein and Nutz (2022).
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sequentially update for j = 1, . . . , k by:

φ
(t+1)
j (Uj) := −λKL log

∫
exp

(∑
i 6=j φ

(t)
i (Ui)− c(U1, . . . , Uk)

λKL

)
dF⊗,−j.

Stop if supj ‖φ
(t+1)
j − φ(t)

j ‖2 < ε for a tolerance ε > 0.

6.2 Proposed Algorithm

For given (θ, v, g, λ, λKL), the EOT problem provides the worst-case distribution, F ∗. This

allows us to update v by solving the structural constraint with F ∗. We therefore propose an

iterative algorithm to solve the minimax problem. The algorithm proceeds by alternating

between updating (θ, v) and the dual (Lagrange multiplier) variables, (g, λ, λKL). After

initializing all parameters, each iteration t involves the following steps:

Algorithm 2. Initialize (θ(0), v(0), g(0), λ(0), λ
(0)
KL). At iteration t,

1. Update Model Primitives (θ, v): For (θ(t), v(t), g(t), λ(t), λ
(t)
KL), update24 the model

parameters (θ, v) by:

(a) Propose a new candidate θ(t+1).

(b) Solve the EOT problem with (θ(t+1), v(t), g(t), λ(t), λ
(t)
KL) and obtain F ∗.

(c) Update v(t+1) by solving the structural constraint with F ∗.

(d) Accept/reject the proposed (θ(t+1), v(t+1)).

2. Update Dual Variables (g, λ, λKL): For (θ(t+1), v(t+1), g(t), λ(t), λ
(t)
KL), update (g, λ, λKL)

following the same procedure as in the previous step.

3. Iterate until convergence, or a pre-specified number of iterations is reached.

The computational cost per iteration mainly comes from solving the EOT problem and

the structural constraint, which are both computationally fast. However, the number of

iterations required for convergence can be much larger, as our optimization problem is a

minimax problem that is potentially non-differentiable.

24If gradient-based methods are used, then we smooth the non-differentiable components (e.g., the indi-
cator function in Example 4) using a smooth approximation.
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7 Empirical Application: Infinite Horizon DDC

This section applies our framework to an infinite-horizon dynamic demand for new cars in

the UK, France, and Germany. Due to the unobserved product characteristics, the indirect

utility of purchasing is the latent variable. To estimate the price elasticity and conduct

welfare analysis of electric vehicles (EV) subsidy, we require a distributional assumption

for the latent variable to solve the Bellman equation. Existing literature often uses an

AR(1) process (e.g., Schiraldi (2011); Gowrisankaran and Rysman (2012)), which may be

misspecified. For example, the indirect utility may exhibit nonlinear dynamics. Therefore,

we conduct a sensitivity analysis with respect to this reference distribution.

7.1 Data

We use the trim-level25 data from IHS Markit during the period from 2014 to 2023. The

monthly level dataset contains sales, list price, and characteristics of car models in the UK,

France and Germany, which are treated as three independent markets in our analysis. To

construct the final dataset, we first aggregate data from the trim-level to the model-level.

Then, we aggregate fuel types into: petrol, diesel, electric, and hybrid. We remove models

whose total sales during the data period are less than 20,000.26 Finally, we adjust list prices

by subtracting EV subsidies. The initial market size for January 2014 is calculated by

subtracting the number of registered cars from the total population of each country. The

market size is then updated each subsequent month by subtracting the total number of cars

sold in the preceding period.

Table 1 presents the summary statistics. The three markets offer around 141–215 prod-

ucts from around 23 to 30 brands per month. In terms of average sales per model, Germany

has 81,401 units, closely followed by France with 81,357 units, and the UK with 70,682 units.

The average price is around $33,444 in the UK, $27,830 in France, and $36,117 in Germany.

7.2 The Model

The model is infinite horizon. At each month t, a consumer i chooses j ∈ Jt
⋃
{0} where Jt

is the set of available cars at t, and 0 is the outside option of not purchasing. Each car j ∈ Jt
25In the automobile industry, a trim-level refers to a specific version of a vehicle model that comes with

a particular set of features, options, and styling elements.
26In addition, we exclude car-month observations with sales below 150 units in the German market and

below 5 units in the French market.
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Table 1: Summary Statistics by Country (Monthly, 2014-2023)

Avg # Avg # Avg # Price (USD) Horsepower Weight (kg)

Country Products Brands Sales Mean Mean Mean

UK 196 30 70,682 33,444 140 1,836
France 141 23 81,357 27,830 112 1,702
Germany 215 26 81,401 36,117 151 1,952

Note: The price is adjusted for EV subsidies. First two columns are average number of products
and brands per month. Average sales is the average number of cars sold per model. Mean price,
horsepower, and weight are weighted by total sales.

is characterized by a vector of observable characteristics xjt, price pjt, and an unobserved

characteristic ξjt. The period utility of choosing j is given by:

u(j, xt, pt, ξt, εit) =

αpjt + xTjtθ + ξjt + εijt if j ∈ Jt
ε0it if j = 0

where εit is a vector of i.i.d. type I extreme value utility shocks, and xt, pt, ξt are the vectors

of observable characteristics, prices, and unobserved characteristics for all cars in Jt.

We assume a purchase is a terminating decision, i.e., consumers exit the market after the

purchase. The conditional value function of purchasing car j can be written as the sum of

the current period utility and the flow utility after purchase:

vj(xt, pt, ξt) =
xTjtθ + ξjt

1− β
+ αpjt

where β = 0.975 is the discount factor. The inclusive value of purchasing is defined as:

ωt = log
∑
j∈Jt

exp

Ç
xTjtθ + ξjt

1− β
+ αpjt

å
Following Schiraldi (2011) and Gowrisankaran and Rysman (2012), we assume:

Assumption 10 (Inclusive Value Sufficiency27 (IVS)). G(ωt+1|xt, pt, ξt) can be summarized

by G(ωt+1|ωt) where G is the conditional distribution function.

Under the IVS assumption, ωt is the only state variable, and the value function V (ω) is

the solution to the smoothed Bellman equation:

V (ω) = log (exp (v0(ω)) + exp (v1(ω))) (9)

27The IVS assumption has also been used in Hendel and Nevo (2006); Melnikov (2013); Osborne (2018).
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where v0(ω) = βE [V (ω′)|ω] and v1(ω) = ω are the conditional value functions of not pur-

chasing and purchasing, respectively. The market share of car j at time t is given by:

sjt(xt, pt, ξt) =
exp (ωt)

exp(V (ωt))︸ ︷︷ ︸
Probability of Purchasing a Car

× exp (vj(xt, pt, ξt))

exp(ωt)︸ ︷︷ ︸
Conditional Probability of Purchasing Car j

(10)

7.3 First-Stage Estimation

In each market, the car with the highest total sales is set as the reference product, denoted

by r.28 Taking the log-odds ratio for cars j and r at time t yields:

log

Å
sjt
srt

ã
= α∆pjt +

∆xTjtθ

1− β
+

∆ξjt
1− β

(11)

where ∆pjt := pjt − prt, ∆xjt := xjt − xrt, and ∆ξjt := ξjt − ξrt. The parameters (α, θ) are

identified29 by the BLP instruments Berry et al. (1993). Moreover, ∆ξjt can be recovered

by fitting the relative market share
sjt
srt

, while the unobserved characteristic of the reference

car, ξrt, cannot.

The exogenous characteristics, xjt, include vehicle log-weight, log-horsepower, brand fixed

effects, SUV fixed effect, and fuel type fixed effects.30 Table 2 presents the regression results.

Price coefficients are negative and significant in all markets, ranging from -0.158 in France

to -0.192 in Germany. Relative to petrol vehicles, EVs are preferred in the UK (0.019) and

France (0.004), but not in Germany (0.000). Hybrid vehicles are valued positively across

all three markets, with coefficients ranging from 0.029 in Germany to 0.037 in France. In

contrast, diesel has a negative coefficient in the UK (-0.015) but positive effects in Germany

(0.008) and France (0.006).

28The reference cars are Volkswagen Golf (Petrol) in Germany, Peugeot 208 (Petrol) in France, and Ford
Fiesta (Petrol) in the UK. The reference car for each country is always available in that country’s market.

29The intercept and reference fixed effects are not identified from (11); they are absorbed into ξrt.
30The instruments are the exogenous product characteristics, average log-weight and log-horsepower of

competitors’ products, the proportion of competitors’ products, the proportion of hybrid cars squared, and
the number of brands. A competitor product is defined as a car whose brand is not that of r or j.
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Table 2: Instrumental Variable Regression Results

UK Germany France

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Price −0.178 (0.043) −0.192 (0.004) −0.158 (0.042)
Log horsepower 0.140 (0.038) 0.165 (0.003) 0.065 (0.031)
Log weight −0.008 (0.003) 0.046 (0.003) 0.002 (0.001)
SUV 0.018 (0.002) −0.003 (0.001) 0.013 (0.002)
Diesel −0.015 (0.003) 0.008 (0.001) 0.006 (0.004)
Electric 0.019 (0.004) 0.000 (0.001) 0.004 (0.002)
Hybrid 0.035 (0.010) 0.029 (0.001) 0.037 (0.009)

Adjusted R2 0.549 0.533 0.803
# of Month-Years 120 120 120
# of Obs. 23,451 25,715 16,862

Note: An observation is a pair of (j, t) where j is a car model other than the reference
car r and t is the time period. Standard errors are in parentheses. Brand fixed effects are
not reported.

7.4 The Reference Distribution and Scalar Parameters of Interest

We first define the reference distribution and then introduce the scalar parameters of interest.

After the first stage estimation, we can calculate ωt up to ξrt as:

ωt = log
∑
j∈Jt

exp

Ç
xTjtθ + ∆ξjt

1− β
+ αpjt

å
+

ξrt
1− β

(12)

As we have identified the utility parameters, the potential sensitivity of the empirical results

solely arises from the distributional assumption on ωt.

The reference transition of ωt to solve the Bellman equation is an AR(1) process:

ωt = γ0 + γ1ωt−1 + ηt (13)

where ηt follows an i.i.d. normal distribution with mean 0 and variance σ2.

The parameters (γ0, γ1, σ
2) are estimated using an iterative procedure. We begin with an

initial guess of (γ0, γ1, σ
2) and circulate between: (i) solving the Bellman equation (9), (ii)

recovering {ωt}Tt=1 from the market share of purchasing (the first part of (10)), (iii) updating

(γ0, γ1, σ
2) by refitting an AR(1) process (13) until we find a fixed point. The reference

distribution F0 for (ω, ω′) is the product of the transition kernel of the estimated AR(1)

process and its stationary distribution ν0. The perturbation set is defined as:

F := {F ∈ P(U) | F ∈ Π(ν0, ν0), DKL(F‖F0) ≤ δ}
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We consider two scalar parameters: (i) the industrywide price elasticity of demand, (ii)

the welfare analysis of an additional EV subsidy. For both cases, the transition of ωt is

unchanged, i.e., we assume consumers’ beliefs about the transition of ωt stay the same.

For industrywide price elasticity at period t1, we consider a 1% increase in the price of

all cars. The future ωt1+1 is conditional on:

ω′t1 = log
∑
j∈Jt1

exp

Ç
xTjt1θ + ∆ξjt1

1− β
+ 1.01 · αpjt1

å
+

ξrt1
1− β

and the industrywide price elasticity at time t1 is:

s0t1 − s0(ω′t1)

1− s0t1

× 100

where s0(ω′t1) is the model-implied market share of not purchasing.

For EV subsidy at t1, we consider an additional 3,000 USD subsidy. Denote by Jt1,EV

the set of EVs at t1. The future ωt1+1 is conditional on:

ωEV
t1

= log
∑
j∈Jt1

exp

Ç
xTjt1θ + ∆ξjt1

1− β
+ α (pjt1 − 1(j is an EV) · 3000)

å
+

ξrt1
1− β

and the consumer surplus from the subsidy is given by:

Consumer Surplus =
V (ωEV

t1
)− V (ωt1)

−α
×Mt1

where Mt1 is the market size at time t1.31

7.5 Sensitivity Analysis

Our framework requires the constraints to be linear in F , while the Bellman equation (9) is

not. We first reformulate it to fit into our framework. By the Hotz-Miller Inversion Lemma

(Hotz and Miller (1993)), we have:

V (ω) = ω − log s1(ω) (14)

31The cost of the subsidy is Cost = 3000 ·Mt1 ·
∑
j∈Jt1,EV

exp(vj(xjt1
,pjt1−3000,ξjt1 ))

exp(V (ωEV
t1

))
.
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Taking the log-odds ratio of purchasing and not purchasing, and using (14), we have:

log

Å
1− s0(ω)

s0(ω)

ã
= ω − βE [ω′ − log(1− s0(ω′))|ω] (15)

The above constraint is the fixed point problem on the market share space (see Aguirregabiria

and Mira (2002)). The right-hand side is linear in the conditional distribution. The following

lemma establishes the relationship between the fixed point problems in (9) and (15).

Assumption 11. Assume the inclusive value ω has compact support Ω ⊂ R with nonempty

interior equipped with the sup-norm and E [f(ω′)|ω] ∈ C(Ω) for any f ∈ C(Ω) where C(Ω)

is the space of continuous functions on Ω.

Lemma 3. The following holds:

(i) Under Assumption 11, the fixed point problem (9) has a unique solution on C(Ω).

(ii) The fixed point problem (15) has a unique solution if and only if the fixed point problem

(9) has a unique solution.

(iii) If (9) and (15) both have unique solutions, then it holds that 1−s0(ω) = exp (ω − V (ω))

where s0(ω) and V (ω) are the solutions to (9) and (15), respectively.

Lemma 3 shows that solving the Bellman equation (9) is equivalent to solving (15). We

further convert (15) into an unconditional moment constraint by assuming that s0(ω) is the

solution to (15) if and only if:

sup
g∈C(Ω)

EF
ï
g(ω)

Å
log(

1− s0(ω)

s0(ω)
)− ω + βω′ − β log(1− s0(ω′))

ãò
= 0 (16)

Assumption 12. For ∀ F ∈ F , the solution s0(ω) corresponding to (15) satisfies the fol-

lowing: for all t = 1, . . . , T , there exists a unique ωt ∈ Ω such that s0(ωt) = s0t.

Assumption 12 allows us to profile out {ωt}Tt=1, which is useful for the implementation. A

sufficient condition is that s0(ω) is continuous and strictly decreasing, and its smallest and

largest values are small and large enough. Under Assumption 11, we have s0(ω) ∈ C(Ω).

Moreover, we can expect that a higher inclusive value ω corresponds to a lower market share

of not purchasing, i.e., s0(ω) is decreasing in ω. Therefore, Assumption 12 is mild.

The last condition is the fixed point constraint similar to the procedure to estimate the

AR(1) process. Suppose the distribution F is used in (16), and {ωt}Tt=1 is the sequence of
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recovered inclusive values. Denote by F̂ the estimator of the joint distribution for the pairs

{(ωt, ωt+1)}T−1
t=1 . Then, our fixed point constraint is:

DKL(F‖F̂ ) ≤ εT

where εT is the tolerance level. To choose εT , we estimate the joint distribution of inclusive

values recovered from the AR(1) process by the kernel density estimator with Gaussian

kernel and bandwidth selected by the 5-fold cross-validation. Then, we set εT to be the KL

divergence between the kernel density estimator and the reference distribution.

For EV subsidy, by (14), the consumer surplus (CS) is given by:

V (ωEV
t1

)− V (ωt1) = ωEV
t1
− ωt1 + log(1 +

s1(ωEV
t1

)− s1t1

s1t1

)

where ωEV
t1
−ωt1 does not depend on F . Therefore, to bound CS, it is equivalent to bounding

the change in the market share of purchase.

Putting everything together, the lower bound on the elasticity at t1 is given by:

inf
s0(ω)∈C(Ω)

inf
F∈F

s0t1 − s0(ω′t1)

1− s0t1

× 100

s.t. s0(ωt) = s0t for t = 1, . . . , T

sup
g∈C(Ω)

EF
ï
g(ω)

Å
log(

1− s0(ω)

s0(ω)
)− ω + βω′ − β log(1− s0(ω′))

ãò
= 0

DKL(F‖F̂ ) ≤ εT

where ω′t1 is replaced by ωEV
t1

for the EV subsidy case. For δ = 0, the reference distribution

is the unique solution to the above problem. The corresponding elasticity is the reference

industrywide elasticity.

7.6 Implementation

We adapt Algorithm 2 proposed in Section 6.2. We will use numerical integration to discretize

the support of the AR(1) process. Therefore, the recovered inclusive values {ωt}Tt=1 are

not differentiable with respect to the discretized market share function s0(ω). To address

this issue, we employ the MCMC optimization method. We alternate between solving the

EOT problem to obtain the worst-case distribution, solving the Bellman equation to update

s0(ω), recovering the inclusive values, and checking the fixed point constraint. To derive a
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tractable dual formulation, we handle the fixed point constraint in a specific way. Because

this constraint depends on an estimator, F̂ , that changes during optimization—potentially

causing numerical instability—we first derive the dual formulation without it.32 Then, the

fixed point constraint determines the acceptance/rejection of the candidate parameters in

the Metropolis-Hastings step. Consider the following optimization problem:

inf
s0(ω)∈C(Ω)

inf
F∈F

s0t1 − s0(ω′t1)

1− s0t1

× 100

s.t. s0(ωt) = s0t for t = 1, . . . , T

sup
g∈C(Ω)

EF
ï
g(ω)

Å
log(

1− s0(ω)

s0(ω)
)− ω + βω′ − β log(1− s0(ω′))

ãò
= 0

Applying Theorem 1, its dual is:

inf
s0(ω)∈C(Ω)

sup
g∈C(Ω),λKL≥0

s0t1 − s0(ω′t1)

1− s0t1

× 100 + C(s0, g, λKL)− λKLδ

s.t. s0(ωt) = s0t for t = 1, . . . , T

where C(s0, g, λKL) is the EOT problem: C(s0, g, λKL) := supF∈Π(ν0,ν0) EF [c(ω, ω′; s0, g)] +

λKLDKL(F‖F0) whose cost function is c(ω, ω′; s0, g) = g(ω)
Ä
log(1−s0(ω)

s0(ω)
)− ω + βω′ − β log(1− s0(ω′))

ä
and the worst-case conditional distribution F ∗ is given by:

dF ∗(ω′|ω) = exp(
φ∗1(ω) + φ∗2(ω′)− c(ω, ω′; s0, g)

λKL
)dF0(ω′|ω) F0-a.s.

where φ∗1(ω) and φ∗2(ω′) are the optimal EOT potentials. During the optimization process,

dF ∗(ω′|ω) is used to update s0(ω) by solving (15) using fixed point iteration.

As shown in Theorem 1, the expectation in the dual is taken with respect to the reference

distribution. Therefore, we discretize the estimated AR(1) process, which results in three

approximation errors: (i) the Bellman equation is solved on the discretized support, (ii)

{ωt}Tt=1 are recovered approximately, and (iii) the elasticity is computed approximately. That

is, we approximate s0(ω) by the market share of the nearest grid point to ω. Therefore, there

is a trade-off between approximation error and computational cost. A finer discretization

reduces the approximation error, while increasing the number of optimization parameters.

However, our dual formulation significantly improves computational efficiency. Suppose

we discretize the AR(1) process into N grid points. If we directly solve (16), the number of

32In principle, we can choose other constraints like the integral probability metrics and adapt the minimax
theorem in Theorem 1. However, it can lead to more optimization parameters.
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optimization parameters is O(N2) due to the transition matrix. In contrast, the number of

optimization parameters is O(N) in the dual formulation.

Algorithm 3 summarizes the simulated annealing MCMC optimization algorithm (Kirk-

patrick et al. (1983)). It starts with the reference market share s(0), and alternate between

proposing new parameters (g′, λ′KL), solving the EOT problem, solving the Bellman equation

using the worst-case distribution, and accepting or rejecting the proposed parameters using

the Metropolis-Hastings step based on the change in the elasticity penalized by the violation

of the market share and fixed-point constraints. At each improvement step, it pools previous

results across all radii for initialization. We choose 51 grid points, 5,000 MCMC steps, 5

optimization steps, 14 radii (the last is 1010), and 100 as the simulated annealing multiplier.

Algorithm 3: Simulated Annealing MCMC Optimization Algorithm
Parameters: N : Number of grid points; T : MCMC steps per optimization run; J : Optimization

steps; m: Simulated annealing multiplier; l: Number of radii;
for j = 1 to J /* Optimization Step j */

do
for i = 0 to l − 1, set δi = 10−3+i·0.25

do
if i = 0 then

If j = 0: Set s(0) as the reference market share. Initialize g(0), λ
(0)
KL.

If j > 0: Set (s(0), g(0), λ
(0)
KL) to the optimal solution from the previous step’s stored

results with upper bound 10−3 on the KL divergence to the reference distribution.

else

If j = 0: Set (g(0), λ
(0)
KL, s

(0)) to the optimal solution from the previous step.

If j > 0: Set (s(0), g(0), λ
(0)
KL) to the optimal solution from the previous stored results

with upper bound 10−3+i·0.25 on the KL divergence to the reference distribution.
end
for t = 1, . . . , T /* Simulated Annealing MCMC optimization */

do
// 1. Propose New Parameters

Propose (g′, λ′KL) from the random walk, solve the EOT problem C(st0, g′, λ′KL) and
obtain F ∗, solve the Bellman equation (15) with F ∗, recover {ωt}Tt=1, estimate the
distribution of {(ωt, ωt+1)}Tt=1 by kernel density estimator, and compute the elasticity.

// 2. Check Constraints and Apply Penalty

Calculate the sum of violations from the market share and fixed-point constraints. The
market share violation is defined as max{0, vioF − vioref} where vioref is the
violation of the reference model. If the total violation exceeds 0.005, add a large
penalty (100). If DKL(F ∗‖F0) > δi, add a large penalty (100).

// 3. Accept/Reject (Metropolis-Hastings)

Apply a Metropolis-Hastings step based on the change in the (penalized) elasticity

multiplied by 10∗(1+(s−1)∗(m−1))
(T−1) where the prior is N (0, 100).

// 4. Adapt (Andrieu and Thoms (2008) Algorithm 4)

Update the random walk via vanishing adaptation scheme.

end

end

end
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7.7 Results

We estimate two alternative transition densities for each market. The first assumes that

the inclusive values are i.i.d. normally distributed. The second estimates a nonlinear AR(1)

process using a cubic spline33. In the following figures, we plot the KL divergence between

the alternative models and the reference model. The independent model is closer to the

reference model with KL divergence between 0.04 to 0.67, while the nonlinear AR(1) process

is farther away, with KL divergence between 3.94 to 10.09.

Figures 1-3 plot the bounds on the industrywide elasticities34 for the UK, Germany, and

France in December 2023. The French market is the least elastic (reference elasticity: -

4.048), while the Germany market the most elastic (reference elasticity: -6.073). The UK

market’s reference elasticity is -5.336. Based on our three sensitivity measures, we define

the local (global) sensitivity as the ratio of the local (global) interval length to the reference

value. For local sensitivity, we set δ = 0.001, while for global sensitivity, we set δ = 1010.

The robustness metric is defined as the smallest deviation from the reference distribution

such that the elasticity can deviate by, for example, 2.5% from the reference elasticity.

The French market is the least sensitive in terms of local and global sensitivity, with 1.16%

local deviation and 6.20% global deviation from the reference elasticity. The UK market is

less sensitive locally (1.66%) than the German market (3.52%). They are both more sensitive

globally (15.16% for the UK vs. 15.24% for Germany) than the French market. The bounds

of UK market flatten around 0.178, while the French and German market flatten around

0.056. For the robustness metric, we consider 2.5% deviation from the reference elasticity.

The UK market’s robustness metric is around 0.018 for the upper bound and 0.008 for the

lower bound. The French market’s robustness metric is around 0.025 for the upper bound

and 0.018 for the lower bound. The German market’s robustness metric is around 0.002 for

the lower bound and 0.003 for the upper bound. Therefore, in terms of robustness metric,

the French market is also the most robust, while the German market is the least robust.

33The nonlinear AR(1) process is specified as: g(ω) =
∑N+3
k=1 ρkΦ

(
ω−a
h − (k − 2)

)
where a is the minimum

of the discretized support of ω, h is the distance between two adjacent grid points, ρk are parameters to be

estimated, and Φ(t) =


4− 6t2 + 3|t|3 if |t| ≤ 1

(2− |t|)3 if 1 < |t| ≤ 2

0 otherwise

. For this model, we set N = 4 to avoid overfitting.

Then, we discretize the reference AR(1) process into 4 grid points, and compute the KL divergence between
the nonlinear AR(1) process and the reference AR(1) process.

34Schiraldi (2011) finds a average long-run price elasticities ranging from -3.54 to -4.34 across different
car segments for the Italian market. D’Haultfœuille et al. (2019) reports average elasticities between -3.94
and -6.40 across consumer groups for the French market. Reynaert and Sallee (2021) finds a mean own-price
elasticity of -5.45 for the European market. Grieco et al. (2024) estimates an average elasticity of -5.36 for
the U.S. market in 2015. Remmy (2025) reports a mean price elasticity of -4.043 for the German market.
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Figures 1-3 also plot the bounds on the consumer surplus from an additional $3,000 EV

subsidy. The subsidy is implemented between July and December 2023, when the reference

consumer surplus is maximized. They are November for the UK (reference CS: $2,880

million), October for France (reference CS: $1,432 million), and September for Germany

(reference CS: $856 million). Overall, the EV subsidy is beneficial as the lower bounds are

$2,584 million for the UK, $1,243 million for France, and $309 million for Germany. The

corresponding costs for subsidy are around $12 million for the UK, $23 million for France,

and $41 million for Germany. The costs are insensitive to the misspecification, as they only

depend on the absolute change in the market share of purchases, and the conditional market

share of EVs, instead of percentage change used for consumer surplus.

In terms of local sensitivity, the UK market is the least sensitive (2.52 % local deviation),

the French market exhibits similar local sensitivity (4.72% local deviation), while the German

market is the most sensitive (24.79% local deviation). In terms of global sensitivity, the UK

market and French markets share similar sensitivity (25.17 % global deviation for the UK,

and 24.73 % for France), while the German market is the most sensitive (102.75 % global

deviation). For the robustness metric, if we consider 10% deviation from the reference CS,

the UK and French markets’ robustness metric are more than 0.018, while the German

market’s robustness metric is around 0.001. Therefore, the German market is also the least

robust in terms of robustness metric.

Figure 4 plots the time series of bounds on the industrywide elasticities. We set δ = 0.001

for the local deviation and δ = 1 for the global deviation, as the bounds flatten at a maxi-

mum of 0.178 in December 2023. Large points in the figure indicate that the KL divergence

constraint is binding—specifically, when the KL divergence between the worst-case distri-

bution and the reference distribution exceeds 0.95 · δ. When two consecutive points align

horizontally, this indicates that increasing the radius does not affect the bounds, as exem-

plified by the UK market in November 2023. In terms of both local and global sensitivity,

the UK and French markets are less sensitive than the German market. All three markets

exhibit some sensitive periods. For the UK market, the upper bound’s global deviation in

February 2022 is around 30% away from the reference elasticity. For the French market, the

upper bounds’ global deviations in April 2021, and July 2022 are around 50% away from the

reference elasticity. For the German market, the lower bound’s global deviation in March

2022 and April 2023 is around 50% away from the reference elasticity. In terms of local

sensitivity, the lower bounds’ of German market in April 2021 is around 50% away from the

reference elasticity.
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Figure 1: Bounds on Industrywide Elasticity and Consumer Surplus for the UK

Figure 2: Bounds on Industrywide Elasticity and Consumer Surplus for France

Figure 3: Bounds on Industrywide Elasticity and Consumer Surplus for Germany
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Figure 4: Time Series of Bounds on Industrywide Elasticity for UK, Germany, and France
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8 Empirical Application: Finite Horizon DDC

This section applies our framework to a finite-horizon dynamic labor supply model for taxi

drivers in New York City (NYC). In the model, the market-level supply shock is the latent

variable. Our reference dynamic process is an AR(1) process. We consider the sensitivity

analysis of the labor supply elasticity with respect to such distributional assumption.

8.1 The Data

We use data from New York City’s Taxi and Limousine Commission’s (TLC) Taxi Passen-

ger Enhancement Project (TPEP). The TPEP data contain a complete record of all trips

operated by licensed drivers. The day shift starts at 5 AM and ends at 5 PM, and the night

shift starts at 5 PM and ends at 5 AM. We choose a sample of 10,500 drivers that were

active in 2013 as in Kalouptsidi et al. (2021c). We restrict the sample to day shift drivers

who were only working during the day shifts. We aggregate the transaction-level data to the

driver-hour level. In addition, we create 10 uniformly divided bins for weekdays (Monday-

Thursday) and 4 bins35 for weekends (Friday-Sunday) between the lowest and highest hourly

earnings and calculate the average hourly earnings in each bin. Then, we remove important

days (i.e., Memorial Day, the Fourth of July, and New Year’s Eve). Finally, we restrict the

sample to shifts that started between 5 AM and 8 AM, which accounts for 86.84% shifts for

weekdays, and 71.84% for weekends. The final sample contains 3,562 drivers and 206 days

for weekdays, and 3,322 drivers and 156 days for weekends.

Table 3 presents the hourly summary statistics. The average hourly earnings range from

$24.22 at 4:00 PM to $37.00 at 8:00 AM. The share of drivers who continue working is high

in the early morning, with 100% of drivers working at 6:00 AM and 7:00 AM. This share

starts to decline after 2 PM, and drops substantially to 52.24% and 53.59% by 4:00 PM.

Therefore, we assume that drivers can only choose to stop working between 8 AM and 4 PM.

8.2 The Model

At the beginning of hour t of day m, a taxi driver i decides whether to continue working

(a = 1) or not (a = 0). The decision to stop working is a terminating action, meaning the

35The number of bins is chosen so that a Gaussian distribution approximates the stationary distribution
of the market-level supply shock recovered from the last period (see Figure 5).
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Table 3: Summary statistics.

Hour
Share of Drivers that Hourly Earnings ($)

Continue Working (%) Weekday Weekend

Weekday Weekend Mean Std Dev Mean Std Dev

6:00 AM 100.00 100.00 32.66 3.00 31.47 3.86
7:00 AM 100.00 100.00 35.04 2.88 30.11 4.49
8:00 AM 98.18 96.21 37.00 2.84 31.21 5.68
9:00 AM 97.64 96.34 34.73 2.37 30.56 4.39
10:00 AM 96.57 96.58 30.02 2.19 30.72 3.33
11:00 AM 95.36 95.80 29.12 2.30 31.48 3.11
12:00 PM 95.53 93.98 30.86 2.26 32.88 2.70
1:00 PM 95.13 94.80 30.62 2.34 33.55 2.65
2:00 PM 92.60 92.84 33.80 2.32 35.02 2.62
3:00 PM 80.61 82.09 34.67 2.02 35.45 2.64
4:00 PM 52.24 53.59 24.22 2.08 25.61 2.40
5:00 PM 0.00 0.00 – – – –

# of Drivers 3,562 3,322
# of Days 206 156

Note: The table uses TPEP Data from January 1, 2013 to December 31, 2013. An
observation is defined by a driver-hour.

driver exits the market upon stopping. The period utility of working is given by:

u(aimt, kimt, wmt, ξmt, εimt; θ) =

θ0 + θ1kimt + θ2k
2
imt + θ3wmt + ξmt + εi1mt if aimt = 1

εi0mt if aimt = 0

where kimt is the number of hours worked, wmt is the average hourly earnings, εimt :=

(εi1mt, εi0mt) is i.i.d. type I extreme value utility shocks, and ξmt is an exogenously evolved

stationary unobserved market-level supply shock. It captures the market-level time-variant

unobserved heterogeneity such as weather, congestion, or city events.

We assume markets are i.i.d, and suppress the subscript (i,m) for brevity. Let u(kt, wt; θ)

be the deterministic part of period of utility of working up to (ξt, εt). Let β := 0.999999 be

the discount factor. The smoothed Bellman equation at time t is given by:

Vt(kt, wt, ξt) = log (exp (v0t(kt, wt, ξt)) + exp (v1t(kt, wt, ξt)))

where the conditional value functions of working and not working are given by:

v1t(kt, wt, ξt) = u(kt, wt; θ) + ξt + βEξt+1|ξtEwt+1|wt [Vt+1(kt + 1, wt+1, ξt+1)] (17)

v0t(kt, wt, ξt) = 0
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8.3 First-Stage Estimation

With only one terminating action, the utility parameters cannot be identified using (11).

Therefore, we estimate the utility parameters using the Euler Equations in Conditional

Choice Probabilities (ECCP) estimator introduced in Kalouptsidi et al. (2021c). By the

Hotz-Miller Inversion Lemma (Hotz and Miller (1993)), we have:

Vt(kt, wt, ξt) = − log pt(kt, wt, ξt) = v1t(kt, wt, ξt)− log(1− pt(kt, wt, ξt)) (18)

where pt(kt, wt) is the CCP of not working. Combining (17) and (18) gives:

log

Å
1− pt(kt, wt, ξt)
pt(kt, wt, ξt)

ã
= u(kt, wt; θ)+ξt−βEξt+1|ξtEwt+1|wt [log pt+1(kt + 1, wt+1, ξt+1)] (19)

Without a distributional assumption for ξt, we cannot calculate the conditional expec-

tation in (19). However, the cross-sectional data allows us to estimate CCPs, denoted as

p̂t(k, w). We estimate p̂t(k, w) by a flexible logit for each t. Let the expectational error be:

ê(kt, wt, kt+1, wt+1, ξt) := β log p̂t+1(kt+1, wt+1)− βEξt+1|ξtEwt+1|wt [log pt+1(kt+1, wt+1, ξt+1)]

where kt+1 = kt + 1. Then, we can rewrite (19) as:

log

Å
1− p̂t(kt, wt)
p̂t(kt, wt)

ã
+ β log p̂t+1(kt+1, wt+1) = u(kt, wt; θ) + ξt + ê(kt, wt, kt+1, wt+1, ξt)

Therefore θ can be identified using an instrument for ξt + ê(kt, wt, kt+1, wt+1, ξt). Denote by

Kt the set of possible hours worked at t.36 The ECCP estimator stacks all k ∈ Kt. A unit of

observation is defined by day-hour.

Following Kalouptsidi et al. (2021c), we use the previous day’s average hourly earnings for

the same hour as the IV. Table 4 shows the estimation results. The implied marginal value

of time defined by − θ1+2θ2k
θ3

ranges from $0 at around k = 7 hours to $5.35 at k = 11 hours

for weekdays, and from $0 at around k = 8 hours to $9.95 at k = 11 hours for weekends.

8.4 The Reference Distribution and Scalar Parameters of Interest

We define the reference distribution and introduce the scalar parameters of interest. Let Ntk

be the number of drivers who has worked k hours at hour t. The market-level ξt equates the

36Note that |Kt| = 4 for t ≥ 9 AM and |Kt| = 3 for t = 8 AM.
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Table 4: ECCP Estimation Results

Model Estimates

Weekday Weekend

Variable Coef. Std. Err. Coef. Std. Err.

Constant −2.1720 (0.0304) −0.5631 (0.0724)
Hours worked 0.4035 (0.0025) 0.1866 (0.0032)
Hours worked (squared) −0.0274 (0.0002) −0.0116 (0.0003)
Average hourly earnings 0.0373 (0.0010) 0.0069 (0.0023)

# of Drivers 3,562 3,322
# of Days 206 156

Notes: A unit of observation is defined by day-hour. Each observation stacks
all kt ∈ Kt. The model is estimated using 2SLS with the previous day’s average
hourly earnings as the IV. The standard errors are clustered at the day-k level.

model-implied weighted average CCP of not working with the observed weighted average:

∑
k∈Kt

Ntk∑
k∈Kt Ntk

pt(k, wt, ξt) =
∑
k∈Kt

Ntk∑
k∈Kt Ntk

p̂t(k, wt) (20)

As we assume ξt is stationary, its marginal distribution at T is its stationary distribution.

At hour T , drivers solve a static problem, and the CCP of not working is:

pT (kT , wT , ξT ) =
1

1 + exp (u(kT , wT , ξT ))

Therefore, the stationary distribution is identified by recovering ξT to satisfy (20) at T .

Figure 5 plots the kernel density estimator of ξT . We fit a Gaussian distribution to the last

period ξT . Denote its mean and standard deviation as µξ and σξ, respectively.

Figure 5: Kernel Density Estimator of the Last Period ξT
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The reference model for ξt is an AR(1) process:

ξt = µ+ ρξt−1 + ηt (21)

where ηt follows i.i.d normal distribution with mean 0 and variance σ2. As we have identified

its stationary distribution, we only need to solve the fixed point problem for ρ: we begin with

an initial guess of ρ and circulate between: (i) setting µ = µξ · (1− ρ) and σ = σξ ·
√

1− ρ2,

(ii) solving the Bellman equation using backward induction, (iii) recovering ξt using (20),

and (iv) updating ρ by refitting the AR(1) process to the recovered ξt until convergence. The

reference distribution F0 for (ξ, ξ′) is the product of the transition kernel of the estimated

AR(1) process and its stationary distribution ν0. The perturbation set is defined as:

F := {F ∈ P(U) | F ∈ Π(ν0, ν0), DKL(F‖F0) ≤ δ}

We consider two scalar parameters of interest: the elasticity of stopping working, and

the Frisch elasticity of labor supply. Both elasticities are at the individual level, meaning

the demand side remains unchanged. Therefore, we keep the transitions of wt and ξt fixed.

For the elasticity of stopping working, we increase the average hourly earnings from the

current bin, wmt, to the next bin, w′mt. The weighted average of the elasticity at hour t is:

∑
m

∑
k∈Kmt

Nmtk∑
m,k∈Kmt Nmtk

pt(k, w
′
mt, ξmt)− p̂kmt
p̂kmt

× w′mt − wmt
wmt

As shown in Table 3, the share of drivers who continue working begins to decline around

11 AM.Moreover, our model does not endogenize the initial entry decision (i.e., the choice of

when to start a shift). To compute the Frisch elasticity, we assume 11 AM is the first hour

drivers can choose to stop working, and consider a 1% increase in average hourly earnings

beginning at 11 AM. The total expected hours worked at day m is:

H(m, ξm,wm, p) :=
∑

k∈{3,4,5,6}

Nmk

16∑
t=12

(t− 11)pmt(k, wmt, ξmt)Π
t−1
t1=11(1− pt1(k, wmt1 , ξmt1))

where Nmk is the number of drivers whose hours worked is k at 11 AM of day m, and ξm,wm

are the vectors of ξmt, wmt for t = 11, . . . , 16. Then, the Frisch elasticity is:∑
mH(m, ξm,w

′
m, p

′)−
∑

mH(m, ξm,wm, p)∑
mH(m, ξm,wm, p)

× 100
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where w′m = 1.01 ·wm, and p′ is derived from the Bellman equation with w′m.

8.5 Sensitivity Analysis

We convert (19) into an unconditional moment constraint by assuming that pt(k, w, ξ) is the

solution to (19) for given pt+1(k + 1, w, ξ) if and only if:

sup
gtk∈C(W×Ξ)

EFEwt+1,wt

ï
gtk(wt, ξt)

Å
log

Å
1− pt(k, wt, ξt)
pt(k, wt, ξt)

ã
− u(k, wt)− ξt + β log pt+1(k + 1, wt+1, ξt+1)

ãò
(22)

Let the term inside the expectation in (22) be ψt(k, wt, wt+1, ξt, ξt+1;u, pt, pt+1, gtk).

To profile out ξmt from recovering the probability of stop working, we assume:

Assumption 13. For ∀ F ∈ F , the solution ptk(w, ξ) corresponding to (22) satisfies the

following: for all m, t, there exists a unique ξmt ∈ Ξ that satisfies (20).

The final constraint is a fixed point constraint similar to the procedure used to estimate

the AR(1) process. Suppose F is used in (22). Denote by F̂ an estimator of the distribution

of the pair (ξ, ξ′) using the recovered {ξmt}M,T−1
m=1,t=1 from (20). Then, our fixed point constraint

is:

DKL(F‖F̂ ) ≤ εM

where εM is the tolerance level. As the sample size is large, we use Scott’s Rule to initialize the

bandwidth and then use 5-fold cross-validation to select bandwidth candidates around Scott’s

estimate that maximizes the log-likelihood. To choose εM , we estimate the joint distribution

of supply shocks recovered from the AR(1) process by the kernel density estimator with

Gaussian kernel. Then, we set εM to be the KL divergence between the kernel density

estimator and the reference distribution.

Then, the lower bound on the elasticity of stopping working at t is:

inf
{pt}T−1

t=1

inf
F∈F

∑
m

∑
k∈Kmt

Nmtk∑
m,k∈Kmt Nmtk

pt(k, w
′
mt, ξmt)− p̂kmt
p̂kmt

× w′mt − wmt
wmt

s.t.
∑
k∈Kmt

Nmtk∑
k∈Kmt Nmtk

pt(k, wmt, ξmt) =
∑
k∈Kmt

Nmtk∑
k∈Kmt Nmtk

p̂t(k, wmt) for ∀ m, t

sup
gtk

EFEwt+1,wt [ψt(k, ξt, ξt+1, wt, wt+1;u, pt, pt+1, gtk)] for ∀ t ≤ T − 1, k (23)

DKL(F‖F̂ ) ≤ εM

52



The last period T is a static problem, therefore pT is not an optimization parameter. For δ =

0, the reference distribution is the unique solution to the above problem. The corresponding

elasticity is the reference elasticity.

For the Frisch elasticity, we increase the earnings coefficient by 1% from 11 AM. This

allows us to leave the discretized state space and its transition unchanged at the cost of

solving additional Bellman equations. The lower bound on the Frisch elasticity is:

inf
{pt,p′t}

T−1
t=1

inf
F∈F

∑
mH(m, ξm,w

′
m, p

′)−
∑

mH(m, ξm,wm, p)∑
mH(m, ξm,wm, p)

× 100

s.t.
∑
k∈Kmt

Nmtk∑
k∈Kmt Nmtk

pt(k, wmt, ξmt) =
∑
k∈Kmt

Nmtk∑
k∈Kmt Nmtk

p̂t(k, wmt) for ∀ m, t

sup
g1tk

EFEwt+1,wt

[
ψt(k, ξt, ξt+1, wt, wt+1;u, pt, pt+1, g

1
tk)
]

for ∀ t ≤ T − 1, k

sup
g2tk

EFEwt+1,wt

[
ψt(k, ξt, ξt+1, wt, wt+1;u′, p′t, p

′
t+1, g

2
tk)
]

for ∀ t ≤ T − 1, k

DKL(F‖F̂ ) ≤ εM

where u′ is the utility function with the earning coefficient increased by 1% from 11 AM.

8.6 Implementation

We adjust the procedure in Section 7.6 to account for the finite horizon model. The main

difference is that we solve the Bellman equation (19) by backward induction. The number

of Bellman equations (23) is 31.37 The number of optimization parameters is 31 ·NwNξ + 1

for the elasticity of stopping working, and 62 ·NwNξ + 1 for the Frisch elasticity, where Nw

is the number of bins for average hourly earnings, Nξ is the number of grid points for ξ, and

1 is for the KL divergence constraint. We choose Nξ = 99, 5,000 MCMC steps for Frisch

elasticities, 2,500 MCMC steps for elasticities of stopping working, 5 optimization steps, 14

radii (the last is 1010), and 100 as the simulated annealing multiplier. The covariance matrix

for the random walk in Algorithm 3 is restricted to be diagonal.

8.7 Results

The alternative model is an independent model where the supply shocks are i.i.d. and follow

the stationary distribution identified at T . The independent model is closer to the reference

37Note that K8 = {1, 2, 3},Kt = {t− 8, t− 7, t− 6, t− 5} for t = 9, · · · , 15.
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model for weekends than for weekdays. The KL divergence between the independent model

and the reference model is 0.115 for weekends and 3.673 for weekdays.

Figure 6 plots the elasticity of stopping working from 9 AM to 3 PM for weekdays and

weekends. We set δ = 0.001 for local deviation and δ = 1 for global deviation. Large

points indicate that the KL divergence constraint is binding. When two consecutive points

align horizontally, this indicates that increasing the radius does not affect the bounds. The

elasticity of stopping working is negative and decreases over time. In particular, the labor

supply is inelastic before 11 AM on weekdays and 12 PM on weekends, and elastic after that.

At 3 PM, the elasticity of stopping working is around -2 for weekdays and -2.5 for week-

ends. Overall, both weekday and weekend elasticities are not sensitive to the distributional

assumption. For weekdays, elasticity in the morning is more sensitive than in the afternoon

in terms of both local and global sensitivity, while it is the opposite for weekends.

Figure 7 plots the Frisch elasticity bounds for weekdays and weekends. The reference

Frisch elasticity is 0.472 for weekends and 0.698 for weekdays. Our reference estimates are

consistent with labor supply literature. For example, Buchholz et al. (2023) reports a Frisch

elasticity ranging from 0.47-0.54 for NYC taxi drivers. For both weekdays and weekends, the

bounds flatten around 0.032-0.056. In terms of local sensitivity, the results appear sensitive

to the distributional assumption, with a deviation of 28.37% for weekdays and 21.76% for

weekends. In terms of global sensitivity, the deviation is larger, with 76.83% for weekdays and

42.84% for weekends. For the robustness metric approach, we consider a 15% deviation from

the reference Frisch elasticity. The weekday’s robustness metric is around 0.001 for the upper

bound, while the lower bound never reaches the 15% deviation. The weekend’s robustness

metric is around 0.008 for the upper bound, and 0.01 for the lower bound. Therefore, the

weekday’s lower bound is more robust than the weekend’s lower bound, while the weekday’s

upper bound is less robust than the weekend’s upper bound.

Figure 6: Elasticity of Stopping Working by Hour of Day for NYC Taxi Drivers
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Figure 7: Frisch Elasticity Bounds by Hour of Day for NYC Taxi Drivers

9 Conclusion

We propose a computationally tractable framework to quantify the sensitivity of outcomes

of interest to misspecified latent-state dynamics in structural models. We derive bounds on

a scalar parameter of interest by perturbing a reference dynamic process, while imposing

a stationarity condition for time-homogeneous models or a Markovian condition for time-

inhomogeneous models. We apply the approach to an infinite-horizon dynamic demand

model for new cars in the UK, Germany, and France, and a finite-horizon dynamic labor

supply model for taxi drivers in New York City.

References

Aguirregabiria, V. and Carro, J. M. (2024). Identification of average marginal effects in fixed
effects dynamic discrete choice models. Review of Economics and Statistics, pages 1–46.

Aguirregabiria, V., Gu, J., and Luo, Y. (2021). Sufficient statistics for unobserved hetero-
geneity in structural dynamic logit models. Journal of Econometrics, 223(2):280–311.

Aguirregabiria, V. and Mira, P. (2002). Swapping the nested fixed point algorithm: A class
of estimators for discrete markov decision models. Econometrica, 70(4):1519–1543.

Aguirregabiria, V. and Mira, P. (2007). Sequential estimation of dynamic discrete games.
Econometrica, 75(1):1–53.

Andrews, D. W. and Shi, X. (2013). Inference based on conditional moment inequalities.
Econometrica, 81(2):609–666.

Andrews, I., Gentzkow, M., and Shapiro, J. M. (2017). Measuring the sensitivity of parameter
estimates to estimation moments. The Quarterly Journal of Economics, 132(4):1553–1592.

55



Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive mcmc. Statistics and computing,
18:343–373.

Arcidiacono, P., Aucejo, E., Maurel, A., and Ransom, T. (2025). College attrition and the
dynamics of information revelation. Journal of Political Economy, 133(1):53–110.

Arcidiacono, P. and Miller, R. A. (2011). Conditional choice probability estimation of dy-
namic discrete choice models with unobserved heterogeneity. Econometrica, 79(6):1823–
1867.

Armstrong, T. B. (2025). Misspecification in econometrics: A selective review.
Armstrong, T. B. and Kolesár, M. (2021). Sensitivity analysis using approximate moment

condition models. Quantitative Economics, 12(1):77–108.
Bartl, D., Drapeau, S., Ob lój, J., and Wiesel, J. (2021). Sensitivity analysis of wasser-

stein distributionally robust optimization problems. Proceedings of the Royal Society A,
477(2256):20210176.

Bayraktar, E., Eckstein, S., and Zhang, X. (2025). Stability and sample complexity of
divergence regularized optimal transport. Bernoulli, 31(1):213–239.

Berry, S. T. and Compiani, G. (2023). An instrumental variable approach to dynamic models.
The Review of Economic Studies, 90(4):1724–1758.

Berry, S. T., Levinsohn, J. A., and Pakes, A. (1993). Automobile prices in market equilib-
rium: Part i and ii.

Billingsley, P. (2013). Convergence of probability measures. John Wiley & Sons.
Blanchet, J., Murthy, K., and Si, N. (2022). Confidence regions in wasserstein distributionally

robust estimation. Biometrika, 109(2):295–315.
Blevins, J. R. (2016). Sequential monte carlo methods for estimating dynamic microeconomic

models. Journal of Applied Econometrics, 31(5):773–804.
Blevins, J. R., Khwaja, A., and Yang, N. (2018). Firm expansion, size spillovers, and market

dominance in retail chain dynamics. Management Science, 64(9):4070–4093.
Bogachev, V. I. and Ruas, M. A. S. (2007). Measure theory, volume 2. Springer.
Bonhomme, S. and Weidner, M. (2022). Minimizing sensitivity to model misspecification.

Quantitative Economics, 13(3):907–954.
Bonnans, J. F. and Shapiro, A. (2013). Perturbation analysis of optimization problems.

Springer Science & Business Media.
Buchholz, N., Shum, M., and Xu, H. (2023). Rethinking reference dependence: Wage dynam-

ics and optimal taxi labor supply. Technical report, working paper, Princeton University
Economics Dept.

Bugni, F. A. and Ura, T. (2019). Inference in dynamic discrete choice problems under local
misspecification. Quantitative Economics, 10(1):67–103.

Carlier, G. (2022). On the linear convergence of the multimarginal sinkhorn algorithm. SIAM
Journal on Optimization, 32(2):786–794.

Chen, X., Hansen, L. P., and Hansen, P. G. (2024). Robust inference for moment condition
models without rational expectations. Journal of Econometrics, 243(1-2):105653.

Chen, X., Tamer, E. T., and Torgovitsky, A. (2011). Sensitivity analysis in semiparametric
likelihood models.

Chernozhukov, V., Hong, H., and Tamer, E. (2007). Estimation and confidence regions for
parameter sets in econometric models 1. Econometrica, 75(5):1243–1284.

Chiong, K. X., Galichon, A., and Shum, M. (2016). Duality in dynamic discrete-choice

56



models. Quantitative Economics, 7(1):83–115.
Christensen, T. and Connault, B. (2023). Counterfactual sensitivity and robustness. Econo-

metrica, 91(1):263–298.
Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. Ad-

vances in neural information processing systems, 26.
De Bortoli, V., Thornton, J., Heng, J., and Doucet, A. (2021). Diffusion schrödinger bridge

with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709.

De Groote, O. and Verboven, F. (2019). Subsidies and time discounting in new technol-
ogy adoption: Evidence from solar photovoltaic systems. American Economic Review,
109(6):2137–2172.

D’Haultfœuille, X., Durrmeyer, I., and Février, P. (2019). Automobile prices in market
equilibrium with unobserved price discrimination. The Review of Economic Studies,
86(5):1973–1998.

Eckstein, S. and Nutz, M. (2022). Quantitative stability of regularized optimal transport and
convergence of sinkhorn’s algorithm. SIAM Journal on Mathematical Analysis, 54(6):5922–
5948.

Eckstein, S. and Nutz, M. (2023). Convergence rates for regularized optimal transport via
quantization. Mathematics of Operations Research.

Eckstein, S. and Nutz, M. (2024). Convergence rates for regularized optimal transport via
quantization. Mathematics of Operations Research, 49(2):1223–1240.

Fan, K. (1953). Minimax theorems. Proceedings of the National Academy of Sciences,
39(1):42–47.

Fan, Y., Pass, B., and Shi, X. (2025). Partial identification in moment models with incom-
plete data via optimal transport. arXiv preprint arXiv:2503.16098.

Fan, Y., Shi, X., and Tao, J. (2023). Partial identification and inference in moment models
with incomplete data. Journal of Econometrics, 235(2):418–443.

Fang, H. and Kung, E. (2021). Why do life insurance policyholders lapse? the roles of income,
health, and bequest motive shocks. Journal of Risk and Insurance, 88(4):937–970.

Fang, Z. and Santos, A. (2019). Inference on directionally differentiable functions. The
Review of Economic Studies, 86(1):377–412.

Gao, R. and Kleywegt, A. (2023). Distributionally robust stochastic optimization with
wasserstein distance. Mathematics of Operations Research, 48(2):603–655.

Goldfeld, Z., Kato, K., Rioux, G., and Sadhu, R. (2024). Statistical inference with regularized
optimal transport. Information and Inference: A Journal of the IMA, 13(1):iaad056.

Gowrisankaran, G. and Rysman, M. (2012). Dynamics of consumer demand for new durable
goods. Journal of political Economy, 120(6):1173–1219.

Grieco, P. L., Murry, C., and Yurukoglu, A. (2024). The evolution of market power in the
us automobile industry. The Quarterly Journal of Economics, 139(2):1201–1253.

Gu, J. and Russell, T. (2024). Wasserstein-robust counterfactuals. Available at SSRN
4517842.

Hendel, I. and Nevo, A. (2006). Measuring the implications of sales and consumer inventory
behavior. Econometrica, 74(6):1637–1673.

Higgins, A. and Jochmans, K. (2023). Identification of mixtures of dynamic discrete choices.
Journal of Econometrics, 237(1):105462.

57



Higgins, A. and Jochmans, K. (2025). Learning markov processes with latent variables.
Econometric Theory, pages 1–13.

Hong, H. and Li, J. (2018). The numerical delta method. Journal of Econometrics,
206(2):379–394.

Hotz, V. J. and Miller, R. A. (1993). Conditional choice probabilities and the estimation of
dynamic models. The Review of Economic Studies, 60(3):497–529.

Hu, Y. and Shum, M. (2012). Nonparametric identification of dynamic models with unob-
served state variables. Journal of Econometrics, 171(1):32–44.

Hu, Z. and Hong, L. J. (2013). Kullback-leibler divergence constrained distributionally robust
optimization. Available at Optimization Online, 1(2):9.

Hwang, Y. (2024). Identification and estimation of a dynamic discrete choice model with
time-varying unobserved heterogeneity using proxies. Available at SSRN 3535098.

Imai, S., Jain, N., and Ching, A. (2009). Bayesian estimation of dynamic discrete choice
models. Econometrica, 77(6):1865–1899.

Iskhakov, F., Jørgensen, T. H., Rust, J., and Schjerning, B. (2017). The endogenous grid
method for discrete-continuous dynamic choice models with (or without) taste shocks.
Quantitative Economics, 8(2):317–365.

Kalouptsidi, M., Kitamura, Y., Lima, L., and Souza-Rodrigues, E. (2021a). Counterfactual
analysis for structural dynamic discrete choice models. NBER Working Paper Series,
(26761).

Kalouptsidi, M., Scott, P. T., and Souza-Rodrigues, E. (2021b). Identification of counter-
factuals in dynamic discrete choice models. Quantitative Economics, 12(2):351–403.

Kalouptsidi, M., Scott, P. T., and Souza-Rodrigues, E. (2021c). Linear iv regression estima-
tors for structural dynamic discrete choice models. Journal of Econometrics, 222(1):778–
804.

Kasahara, H. and Shimotsu, K. (2009). Nonparametric identification of finite mixture models
of dynamic discrete choices. Econometrica, 77(1):135–175.

Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. science, 220(4598):671–680.

Kitamura, Y., Otsu, T., and Evdokimov, K. (2013). Robustness, infinitesimal neighborhoods,
and moment restrictions. Econometrica, 81(3):1185–1201.

Koulayev, S. (2014). Search for differentiated products: identification and estimation. The
RAND Journal of Economics, 45(3):553–575.

Kuhn, D., Esfahani, P. M., Nguyen, V. A., and Shafieezadeh-Abadeh, S. (2019). Wasserstein
distributionally robust optimization: Theory and applications in machine learning. In
Operations research & management science in the age of analytics, pages 130–166. Informs.
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A Additional Examples

Example 4 (Infinite Horizon Dynamic Discrete Choice Models). This example considers

the serial independence assumption on utility shocks in a single-agent DDC model, as in

Rust (1987). Agents solve the Bellman equation for the conditional value function v ∈ V :

vj(x, ε) = uj(x, ε; θ) + βEε′|εEx′|x,j max
j′∈J

vj′(x
′, ε′) (24)

where ε ∈ RJ is a vector of utility shocks for each action j ∈ J , x ∈ X is the observable

state variable, β ∈ (0, 1) is the discount factor, uj(x, ε; θ) is the period utility parameterized

by θ ∈ Θ, and V is the class of conditional value functions.

Let U := (ε, ε′) be a vector of current and future utility shocks. The serial independence

is often imposed on utility shocks, which implies a reference distribution:

dF0(U) := ν0(dε)ν0(dε′)
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whose perturbation set is defined as:

F := {F ∈ P(U) | F ∈ Π(ν0, ν0), DKL(F‖F0) ≤ δ}

Suppose the scalar parameter of interest is the social welfare, defined as:

Eν0Ex max
j∈J

vj(x, ε)

We convert the Bellman equation (24) into a restriction that depends on the joint distri-

bution F ∈ F . We assume there exists a class of Lagrange multiplier functions G such that

v solves the Bellman equation (24) if and only if:

sup
g∈G

EFEx,j,x′
ï
gj(x, ε)

Å
vj(x, ε)− uj(x, ε; θ)− βmax

j′∈J
vj′(x

′, ε′)

ãò
= 0

We can rewrite the structural constraint as:

sup
g∈G

EF [ψ(U ; θ, v, g)] = 0

where ψ(U ; θ, v, g) := Ex,j,x′ (gj(x, ε) (vj(x, ε)− uj(x, ε; θ)− βmaxj′∈J vj′(x
′, ε′))).

We consider the following moment conditions for estimation:

EF1(vj(x, ε) = max
j′∈J

vj′(x, ε)) = P0(j|x) ∀ (j, x) ∈ J × X

where 1 is the indicator function, and P0(j|x) is the population CCP. We assume X has

discrete support, and rewrite the moment conditions as:

EF [m(U ; v)] = P0

where m(U ; v) stacks the indicator functions for each (x, j) given v, and P0 stacks the CCPs.

Then, the lower bound on the social welfare is given by:

inf
(θ,v,F )∈Θ×V×F

Eν0Ex max
j∈J

vj(x, ε)

s.t. EF [m(U ; v)] = P0

sup
g∈G

EF [ψ(U ; θ, v, g)] = 0

Example 5 (Infinite Horizon Dynamic Discrete-Continuous Choice Models). This example
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considers the serial independence assumption on the consumption shock in a single-agent

dynamic discrete-continuous choice model, as in Iskhakov et al. (2017) and Levy and Schiraldi

(2022). At each period, individuals make a discrete choice j ∈ J , and a continuous choice

q ∈ R. The value function solves the Bellman equation:

V (x, I, ξ, ε) = max
j,q

{
uj(q, x, I, ξ; θ) + εj + βEξ′|ξEx′|x,jV (x′, I ′, ξ′, ε′)

}
where I is the resource constraint (e.g., inventory) evolving deterministically over time ac-

cording to I ′ = L(x, I, q, j), x ∈ X is the observable state variable, ε ∈ RJ is a vector of

i.i.d. Extreme Value Type I utility shocks, ξ ∈ Ξ is the consumption shock, uj(q, x, I, ξ; θ)

is the period utility parameterized by θ ∈ Θ, and β ∈ (0, 1) is the discount factor.

Let q∗j := q∗j (x, I, ξ) be the conditional optimal continuous choice for (j, x, I, ξ). Given

q∗j , the conditional value function vj ∈ V solves:

vj(x, I, ξ) = uj(q
∗
j , x, I, ξ; θ) + βEξ′|ξEx′|x,j

[
log

(∑
j′∈J

exp (vj′(x
′, I ′, ξ′))

)]
+ βγ (25)

The model-implied conditional choice probability is p(j|x, I, ξ) =
exp(vj(x,I,ξ))∑

j′∈J exp(vj′ (x,I,ξ))
.

We assume that the optimal continuous choice is attained at an interior point and the

dominated convergence theorem holds. Therefore, the first-order condition for (25) holds:

∂uj(q
∗
j , x, I, ξ; θ)

∂q
+ βEξ′|ξEx′|x,j

[∑
j′∈J

p(j′|x′, I ′, ξ′)∂vj
′(x′, I ′, ξ′)

∂I ′

]
∂L(x, I, q∗j , j)

∂q
= 0

By the envelope theorem, we have:

∂vj′(x
′, I ′, ξ′)

∂I ′
=
∂uj′(q

∗
j′ , x

′, I ′, ξ′; θ)

∂q

Therefore, the Euler equation for the optimal continuous choice is:

∂uj(q
∗
j , x, I, ξ; θ)

∂q
+ βEξ′|ξEx′|x,j

[∑
j′∈J

p(j′|x′, I ′, ξ′)
∂uj′(q

∗
j′ , x

′, I ′, ξ′; θ)

∂q

]
∂L(x, I, q∗j , j)

∂q
= 0

(26)

Let U := (ξ, ξ′) be a vector of current and future consumption shocks. The serial inde-

pendence is often imposed on consumption shocks, which implies a reference distribution:

dF0(U) := ν0(dξ)ν0(dξ′)
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whose perturbation set is defined as:

F := {F ∈ P(U) | F ∈ Π(ν0, ν0), DKL(F‖F0) ≤ δ}

Suppose the scalar parameter of interest is the social welfare, defined as:

Eν0Ex,I

[
log

(∑
j∈J

exp (vj(x, I, ξ))

)]

We convert the Bellman equation (25) and the Euler equation (26) into restrictions that

depend on the joint distribution F ∈ F . We assume there exists a class of Lagrange multiplier

functions G such that v := (v1, · · · , vJ , q∗1, · · · , q∗J) solves the Bellman equation (25), and the

Euler equation (26) if and only if:

sup
g1∈G

EFEx,I,j,x′
[
g1
j (x, I, ξ)

(
vj(x, I, ξ)− uj(q∗j , x, I, ξ; θ)− β log

(∑
j′∈J

exp (vj′(x
′, I ′, ξ′))

)
− βγ

)]
= 0

sup
g2∈G

EFEx,I,j,x′
[
g2
j (x, I, ξ)

(
∂uj(q

∗
j , x, I, ξ; θ)

∂q
+ β

∑
j′∈J

p(j′|x′, I ′, ξ′)
∂uj′(q

∗
j′ , x

′, I ′, ξ′; θ)

∂q

∂I ′(x, I, q∗j , j)

∂q

)]
= 0

We rewrite the structural constraints as supg∈G EF [ψ(U ; θ, v, g)] = 0 where ψ is the sum of

the two expressions inside the expectations and g := (g1, g2).

We consider the following moment conditions for estimation: ∀ (j, x, I) ∈ J × X × I

EF [p(j|x, I, ξ)] = P0(j|x, I), EF
[
q∗j (x, I, ξ)

]
= q0(j, x, I)

where P0(j|x, I) is the population CCP and q0(j, x, I) is the population continuous choice

function. We discretize X×I for estimation, and rewrite the moment conditions as EF [m(U ; v)] =

P0EF [m(U ; v)] = P0 where m (P0) stacks the model-implied (population) CCPs and contin-

uous choice functions.

Then, the lower bound on the social welfare is given by:

inf
(θ,v,F )∈Θ×V×F

Eν0Ex,I log

(∑
j∈J

exp (vj(x, I, ξ))

)
s.t. EF [m(U ; v)] = P0

sup
g∈G

EF [ψ(U ; θ, v, g)] = 0
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B Proofs

B.1 Supporting Lemmas

Lemma 4 (Fan’s Minimax Theory). Suppose the following conditions hold:

1. X be a compact Hausdorff space and Y a nonempty set (not necessarily topologized).

2. Let f : X × Y → R be a real-valued function.

3. For ∀ y ∈ Y , f(·, y) is convexlike on X, i.e., for all x1, x2 ∈ X and λ ∈ [0, 1], there

exists x0 ∈ X such that f(x0, y) ≤ λf(x1, y) + (1− λ)f(x2, y).

4. For ∀ x ∈ X, f(x, ·) is concavelike on Y , i.e., for all y1, y2 ∈ Y and λ ∈ [0, 1], there

exists y0 ∈ Y such that f(x, y0) ≥ λf(x, y1) + (1− λ)f(x, y2).

5. For ∀ y ∈ Y , f(·, y) is lower semicontinuous on X.

Then, we have:

sup
Y

inf
X
f(x, y) = inf

X
sup
Y
f(x, y)

Proof. See Ricceri and Simons (2013) Theorem 1.3.

Lemma 5. Let {An} be a sequence of compact sets such that dH(An,A) = op(1) where A is

compact. Then, the following holds:

• (Consistency) If f : A → R is continuous, then: | infAn f − infA f | = op(1).

• (Convergence Rate) If dH(An,A) = Op(cn) for some cn → 0, and f is Lipschitz con-

tinuous, then: | infAn f − infA f | = Op(cn).

Proof. AsAn andA are compact and f is continuous, the infimum is achieved by the extreme

value theorem. Denote minimizers as a∗n ∈ An and α∗ ∈ A.

1. As dH(An,A) = op(1), there exists a sequence an ∈ A such that d(a∗n, an) = op(1).

By the continuity of f , we have: |f(a∗n) − f(an)| = op(1), which implies: f(a∗n) =

f(an) + op(1) ≥ f(a∗) + op(1). Similarly, there exists a sequence bn ∈ An such that

d(bn, a
∗) = op(1). By the continuity of f , we have: |f(bn) − f(a∗)| = op(1), which

implies: f(a∗) = f(bn) + op(1) ≥ f(a∗n) + op(1). Combining both inequalities, we have

f(a∗n) ≥ f(a∗) + op(1) ≥ f(a∗n) + op(1) + op(1), which implies: | infAn f − infA f | =

|f(a∗n)− f(a∗)| = op(1).
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2. For the second part, let L be the Lipschitz constant. There exists a sequence an ∈ A
such that d(a∗n, an) = Op(cn), by the Lipschitz continuity of f , we have: |f(a∗n) −
f(an)| ≤ Ld(a∗n, an) = Op(cn), which implies: f(a∗n) ≥ f(an) − Ld(a∗n, an) ≥ f(a∗) −
Ld(a∗n, an). Similarly, there exists a sequence bn ∈ An such that d(bn, a

∗) = Op(cn).

By the Lipschitz continuity of f , we have: |f(bn) − f(a∗)| ≤ Ld(bn, a
∗) = Op(cn),

which implies: f(a∗) ≥ f(bn) − Ld(bn, a
∗) ≥ f(a∗n) − Ld(bn, a

∗). Combining both

inequalities, we have: f(a∗n) ≥ f(a∗)−Ld(bn, a
∗) ≥ f(a∗n)− 2Ld(bn, a

∗), which implies:

|f(a∗n)− f(a∗)| ≤ 2Ld(bn, a
∗) = Op(cn).

Lemma 6. Let δ > 0 and F0 ∈ P(U). Let FKL := {F ∈ P(U) | DKL(F‖F0) ≤ δ}.

(i) FKL is compact in the topology of weak convergence.

(ii) FKL is closed in the topology of weak convergence.

Proof. 1. See Pinski et al. (2015) Proposition 2.1.

2. By Nutz (2021) Lemma 1.3, DKL(F‖F0) is lower-semicontinuous in the topology

of weak convergence, i.e., for Fn → F weakly, we have lim infn→∞DKL(Fn‖F0) ≥
DKL(F‖F0). Since Fn ∈ FKL, we have DKL(F‖F0) ≤ δ.

Lemma 7. Let νi ∈ P(Ui) for i ∈ {1, · · · , k}, then:

(i) Π(ν1, · · · , νk) is closed in the topology of weak convergence.

(ii) Π(ν1, · · · , νk) is compact and convex in the topology of weak convergence.

(iii) Π(ν1, · · · , νk) is a Hausdorff topological space.

(iv) Under Assumption 2(i), Π(ν1, νk) is closed in the topology of weak convergence.

(v) Π(ν1, νk) is convex in the topology of weak convergence.

(vi) Under Assumption 2(i), Π(ν1, νk) is compact in the topology of weak convergence.

(vii) Π(ν1, νk) is a Hausdorff topological space.

(viii) Suppose N is convex and closed and Assumption 2(i) holds, {F ∈ P(U) | F ∈ Π(ν, νk), ν ∈ N}
is closed in the topology of weak convergence.
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(ix) Suppose N is convex and closed and Assumption 2(i) holds, then {F ∈ P(U) | F ∈ Π(ν, νk), ν ∈ N}
is convex in the topology of weak convergence.

(x) Suppose N is convex and closed and Assumption 2(i) holds, {F ∈ P(U) | F ∈ Π(ν, νk), ν ∈ N}
is compact in the topology of weak convergence.

(xi) Suppose N is convex and closed and Assumption 2(i) holds, {F ∈ P(U) | F ∈ Π(ν, νk), ν ∈ N}
is a Hausdorff topological space.

(xii) Lemmas 7(viii)-7(xi) also hold for {F ∈ P(Ξ2) | F ∈ Π(ν, ν), ν ∈ N}.

Proof. 1. Closedness and compactness of Π(ν1, · · · , νk): see the proof of Villani et al.

(2009) Theorem 4.1.

2. Closedness and compactness of Π(ν1, νk): By Assumption 2(i), Π(ν1, νk) is tight,

and by Prokhorov’s theorem it has a compact closure. By passing to the limit in the

equation for marginals, Π(ν1, νk) is closed. Therefore, it is compact.

3. Closedness and compactness of {F ∈ P(U) | F ∈ Π(ν, νk), ν ∈ N}: By Assump-

tion 2(i), the set {F ∈ P(U) | F ∈ Π(ν, νk), ν ∈ N} is tight, and by Prokhorov’s theo-

rem it has a compact closure. By passing to the limit in the equation for marginals, it

is closed. Therefore, it is compact.

4. Closedness and compactness of {F ∈ P(U) | F ∈ Π(ν, ν), ν ∈ N}: The proof is

similar to the previous part.

5. Convexity: It is straightforward.

6. Hausdorff: By Billingsley (2013) Page 72(i), the Prohorov distance is a metric on the

space of probability measures. Metrizable topological spaces are Hausdorff.

Lemma 8. Let δ ≥ 0, F0 ∈ P(U), and νi ∈ P(Ui) for i ∈ {1, · · · , k}. Define:

F := {F ∈ P(U) | F ∈ Π(ν1, · · · , νk), DKL(F‖F0) ≤ δ}

(i) F is closed and compact in the topology of weak convergence.

(ii) F is convex in the topology of weak convergence.

(iii) F is a Hausdorff topological space.
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Proof. 1. By Lemmas 6(ii) and 7(i), F is the intersection of two closed sets. Therefore,

it is closed. By Rudin et al. (1976) Theorem 2.35, F is compact.

2. Since KL divergence is jointly convex (see Nutz (2021) Lemma 1.3), we have DKL(λF1+

(1−λ)F2‖F0) ≤ λDKL(F1‖F0) + (1−λ)DKL(F2‖F0) ≤ δ for λ ∈ [0, 1] and F1, F2 ∈ F .

Moreover, λF1 + (1− λ)F2 ∈ Π(ν1, · · · , νk). Therefore, F is convex.

3. By Billingsley (2013) Page 72(i), the Prohorov distance is a metric on the space of

probability measures. Metrizable topological spaces are Hausdorff.

Lemma 9. Suppose Assumption 2(i) holds. Let δ ≥ 0, F0 ∈ P(U), and νi ∈ P(Ui) for

i ∈ {1, k}. Let Frelaxed := {F ∈ P(U) | F ∈ Π(ν1, νk), DKL(F‖F0) ≤ δ}.

(i) Frelaxed is closed and compact in the topology of weak convergence.

(ii) Frelaxed is convex in the topology of weak convergence.

(iii) Frelaxed is a Hausdorff topological space.

Proof. 1. By Lemmas 6(ii) and 7(iv), Frelaxed is the intersection of two closed sets. There-

fore, it is closed. By Rudin et al. (1976) Theorem 2.35, Frelaxed is compact.

2. The proof is identical to the proof of Lemma 8(ii).

3. The proof is identical to the proof of Lemma 8(iii).

Lemma 10. Suppose Assumption 2(i) holds. Let δ ≥ 0, F0 ∈ P(U) and νk ∈ P(Uk). Suppose

N ⊆ P(U1) is convex. Let FN ,Relaxed := {F ∈ P(U) | F ∈ Π(ν, νk), ν ∈ N , DKL(F‖F0) ≤ δ}.

(i) FN ,Relaxed is closed and compact in the topology of weak convergence.

(ii) FN ,Relaxed is convex in the topology of weak convergence.

(iii) FN ,Relaxed is a Hausdorff topological space.

Proof. 1. By Lemma 7(viii), and Rudin et al. (1976) Theorem 2.35, FN ,Relaxed is compact.

2. Note that N is convex. For any F1, F2 ∈ FN ,Relaxed, we have ν1, ν2 ∈ N . By the

convexity of N , we have λν1 +(1−λ)ν2 ∈ N for λ ∈ [0, 1]. Therefore, λF1 +(1−λ)F2 ∈
Π(λν1 + (1− λ)ν2, νk) and DKL(λF1 + (1− λ)F2‖F0) ≤ δ. Thus, FN ,Relaxed is convex.
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3. The proof is identical to the proof of Lemma 8(iii).

B.2 Proofs in Section 2

B.2.1 Proof of Theorems 1 and 10

We only prove Theorem 1. The proofs for Theorem 10 is similar. First, we prove the minimax

part. The Lagrangian of the Primal problem is:

κ(δ, P ) = inf
(θ,v)∈Θ×V

F∈Π(ν1,...,νk)

sup
λ∈RdP

λKL≥0,g∈G

EF [c(U ; θ, v, g, λ)] + λKLDKL(F‖F0)− λKLδ − λTP

Lemma 11 (Minimax). Under Assumption 1, we have:

κ(δ, P ) = inf
(θ,v)∈Θ×V

sup
λ∈RdP

λKL≥0,g∈G

inf
F∈Π(ν1,...,νk)

EF [c(U ; θ, v, g, λ)] + λKLDKL(F‖F0)− λKLδ − λTP

Proof. In the proof, we show that the minimax theorem holds for given (θ, v) by verifying

the conditions in Lemma 4. For notational simplicity, define:

L(F, g, λ, λKL) := EF [c(U ; θ, v, g, λ)] + λKLDKL(F‖F0)− λKLδ − λTP

• Compactness: By Lemma 7(ii), Π(ν1, · · · , νk) is compact.

• Hausdorff: By Lemma 7(iii), Π(ν1, · · · , νk) is Hausdorff.

• Concavelike: Note that L(F, g, λ, λKL) is linear in (λ, λKL, g). Therefore, the con-

cavelike condition is satisfied.

• Convexlike: By Lemma 7(ii), Π(ν1, · · · , νk) is a convex space. Therefore, convex

combinations of elements in Π(ν1, · · · , νk) are also in Π(ν1, · · · , νk). Since DKL(F‖F0)

is jointly convex (see Nutz (2021) Lemma 1.3), and the expectation is linear in F , the

convexlike condition also holds.

• Lower-semicontinuity: Let h(U) := −(1 + ‖λ‖1)Cθ,v,g(1 + d(U, Û)). Under As-

sumption 1(v), we have h ∈ L1(F ) for all F ∈ Π(ν1, · · · , νk). Therefore, for given

(λ, λKL, g), EF [c(U ; θ, v, g, λ)] is lower-semicontinuous in F by Villani et al. (2009)

Lemma 4.3. By Nutz (2021) Lemma 1.3, DKL(F‖F0) is lower-semicontinuous in F .
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By the superadditivity of lim inf, L(F, g, λ, λKL) is also lower-semicontinuous in F for

given (λ, λKL, g).

Lemma 12. Define:

L(δ, θ, v, g, λ) := sup
λKL≥0

inf
F∈Π(ν1,...,νk)

EF [c(U ; θ, v, g, λ)] + λKLDKL(F‖F0)− λKLδ − λTP

Under Assumption 1, we have:

L(δ, θ, v, g, λ) = sup
λKL≥0

inf
F∈Π(ν1,··· ,νk)

EF [c(U ; θ, v, g, λ) + λKLρ(U)]+λKL(DKL(F‖F⊗)−δ)−λTP

Proof. By Assumption 1(ii), we have:

DKL(F‖F0) =

∫
log(

dF

dF⊗

dF⊗
dF0

)dF =

∫
log(

dF

dF⊗
)dF+

∫
log(

dF⊗
dF0

)dF = DKL(F‖F⊗)+

∫
ρ(U)dF

Moreover, by Assumption 1(v), we have c(U ; θ, v, g, λ), ρ ∈ L1(F ) for ∀ F ∈ Π(ν1, · · · , νk).
Therefore, the sum of two expectations is also well-defined.

Lemma 13. Suppose Assumption 1 holds. If c(U ; θ, v, g, λ) and ρ(U) are continuous in U ,

then optimizing over λKL > 0 gives the same value as optimizing over λKL ≥ 0, i.e.,

L(δ, θ, v, g, λ) = sup
λKL>0

inf
F∈Π(ν1,··· ,νk)

EF [c(U ; θ, v, g, λ) + λKLρ(U)]+λKL(DKL(F‖F⊗)−δ)−λTP

Proof. By Eckstein and Nutz (2023) Proposition 3.1, we have:

lim
λKL↓0

inf
F∈Π(ν1,··· ,νk)

EF [c(U ; θ, v, g, λ) + λKLρ(U)]+λKL(DKL(F‖F⊗)−δ) = inf
F∈Π(ν1,··· ,νk)

EF [c(U ; θ, v, g, λ)]

Therefore, for any sequence λiKL → 0 as i→∞, we have:

lim
i→∞

inf
F∈Π(ν1,··· ,νk)

EF [c(U ; θ, v, g, λ) + λKLρ(U)]+λiKL(DKL(F‖F⊗)−δ) = inf
F∈Π(ν1,··· ,νk)

EF [c(U ; θ, v, g, λ)]

Then, we show the EOT duality part. For λKL > 0, consider the following EOT problem:

C(θ, v, g, λ, λKL) := inf
F∈Π(ν1,··· ,νk)

EF [c(U ; θ, v, g, λ) + λKLρ(U)] + λKLDKL(F‖F⊗)
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Theorem 12 (EOT Duality). Under Assumption 1, for λKL > 0, the following holds:

C(θ, v, g, λ, λKL) = sup
{φi∈L1(νi)}ki=1

k∑
i=1

Eνiφi(Ui)− λKLEF0 exp(

∑k
i=1 φi(Ui)− c(U ; θ, v, g, λ)

λKL
) + λKL

Moreover, the worst-case distribution is given by:

dF ∗(U)

dF0(U)
= exp(

∑k
i=1 φ

∗
i (Ui)− c(U ; θ, v, g, λ)

λKL
) F0-a.s.

where {φ∗i }ki=1 are unique maximizers up to additive constants F0-almost surely.

Proof. Under Assumption 1(v), c(U ; θ, v, g, λ), ρ(U) ∈ L1(F⊗). For two marginals (k = 2),

see Nutz (2021) Theorem 4.7 and Remark 4.8(a). The results generalize directly to the

multi-marginal case (see Nutz and Wiesel (2022) Section 6). Their results hold F⊗-a.s.

Since F0 � F⊗, the results also hold F0-a.s. Moreover, note that:

EF⊗ exp(

∑k
i=1 φi(Ui)− c(U ; θ, v, g, λ)− λKLρ(U)

λKL
) = EF0 exp(

∑k
i=1 φi(Ui)− c(U ; θ, v, g, λ)

λKL
)

B.2.2 Proof of Proposition 1

Proof of Proposition 1. As showed in Nutz (2021) equation 4.11, the fact that F ∗ in

Theorem 12 is a probability measure with marginals (ν1, · · · , νk) implies the Schrödinger

equations: for ∀ j ≤ k:

φ∗i (Uj) = −λKL logEF⊗,−j exp(

∑
i 6=j φ

∗
i (Ui)− c(U ; θ, v, g, λ)

λKL
) νj-a.s.

Since c is k-times continuously differentiable in U , the right-hand side is also k-times con-

tinuously differentiable in Uj. Therefore, φ∗j(Uj) is k-times continuously differentiable in Uj

for ∀ j ≤ k.

B.2.3 Proof of Theorem 2

Proof of Theorem 2. In the proof, we first swap the order of infimum over F and the

supremum over (λ, λKL, g) by the minimax theorem. Then, we swap the order of infimum

70



over ν and the supremum over (φ1, φ2) by the minimax theorem. Define:

L(F, g, λ, λKL) := EF [c(ξ, ξ′; θ, v, g, λ)] + λKLDKL(F‖F0)− λKLδ − λTP

• Compactness and Hausdorff: By Lemma 7(xii), {F ∈ P(Ξ2) | F ∈ Π(ν, ν), ν ∈ N}
is compact and Hausdorff.

• Concavelike: Note that L(F, g, λ, λKL) is linear in (λ, λKL, g). Therefore, the con-

cavelike condition is satisfied.

• Convexlike: By Lemma 7(xii), {F ∈ P(Ξ2) | F ∈ Π(ν, ν), ν ∈ N} is convex. Since

DKL(F‖F0) is jointly convex (see Nutz (2021) Lemma 1.3), and the expectation is

linear in F , the convexlike condition also holds.

• Lower-semicontinuity: Let h(ξ, ξ′) := −(1 + ‖λ‖1)Cθ,v,g(1 + d(ξ, ξ′, ξ̂, ξ̂′)). Under

Assumption 1(v) and as Ξ is compact, we have h ∈ L∞(Ξ2). Therefore, for given

(λ, λKL, g), EF [c(ξ, ξ′; θ, v, g, λ)] is lower-semicontinuous in F by Villani et al. (2009)

Lemma 4.3. By Nutz (2021) Lemma 1.3, DKL(F‖F0) is lower-semicontinuous in F .

By the superadditivity of lim inf, L(F, g, λ, λKL) is also lower-semicontinuous in F for

given (λ, λKL, g).

Therefore, by Lemma 4 and the EOT duality in Theorem 1, we have:

κstationary(δ1, δ, P ) = inf
(θ,v)∈Θ×V

sup
λ∈RdP ,λKL≥0,g∈G

inf
ν∈N

C(θ, v, g, λ, λKL, ν)− λKLδ − λTP

C(θ, v, g, λ, λKL, ν) = sup
φ1,φ2∈L1(ν)

Eν [φ1(ξ) + φ2(ξ′)]− λKLEF0 exp

Å
φ1(ξ) + φ2(ξ′)− c(ξ, ξ′; θ, v, g, λ)

λKL

ã
+ λKL

Furthermore, as Ξ is compact, we can replace L1(ν) with L∞(Ξ). Moreover, φ∗1 and φ∗2 are

bounded (see Nutz (2021) Lemma 4.9) Moreover, by the lower semicontinuity of c(ξ, ξ′; θ, v, g, λ),

the Fatou’s lemma, and the proof of Theorem 12, φ∗1 and φ∗2 are lower semicontinuous.

Next, we swap the order of infimum over ν and the supremum over (φ1, φ2):

• Compactness and Hausdorff: By Lemma 6, N is compact. Note that metrizable

spaces are Hausdorff.

• Convexlike: As the expectation is linear in ν and N is convex, the convexlike condi-

tion is satisfied.

• Concavelike: It is straightforward to see that the objective function is concave in

(φ1, φ2) as L∞(Ξ) is convex.
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• Lower-semicontinuity: For given (φ1, φ2), Eν [φ1(ξ) + φ2(ξ′)] is lower-semicontinuous

in ν by Villani et al. (2009) Lemma 4.3 as φ1 and φ2 are bounded.

The KL divergence DRO duality holds by Hu and Hong (2013) Theorem 1.

B.3 Proofs in Section 3

We only prove Theorem 3. The proof for Theorem 11 is the same.

B.3.1 Proof of Theorem 3

Proof of Theorem 3. 1. Minimax Part: The proof of minimax part is similar to

Lemma 11. Convexity and compactness of Π(ν1, νT ) are given by Lemmas 7(v) and

7(vi). Moreover, the bounds on the cost function is replaced by the finite constant in

Assumption 2(iii). Finally, Lemma 7(iii) is replaced by Lemma 7(vii).

2. Duality Part: For notational simplicity, let c(U) := c(U ; θ, v, g, λ, λs). Then, Sdyn

can be rewritten as:

inf
F∈Π(ν1,νT )

EF [c(U)] + λKLDKL(F‖F0) (27)

By Assumption 2(iii), exp(−c(U)
λKL

) is bounded and in particular, exp(−c(U)
λKL

) ∈ L1(F0).

Therefore, we can define the auxiliary reference measure R as follows:

dR(U) := exp(
−c(U)

λKL
)dF0(U)

Note that R ∼ F0. Then, (27) is equivalent to:38

inf
F∈Π(ν1,νT )

λKLDKL(F‖R) (28)

By Léonard (2014) Theorem 2.4, we have:

DKL(F‖R) = DKL(F1,T‖R1,T ) + EF1,T

[
DKL(F|1,T‖R|1,T )

]
where F1,T and R1,T are the two-period marginals of F and R, respectively. F|1,T , R|1,T

38This is the Schrödinger bridge problem, see Léonard (2013) for continuous time setting and De Bortoli
et al. (2021) for discrete time setting.
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are the conditional distribution given (ξ1, ξT ). In particular, we have:

dR1,T (ξ1, ξT ) :=

∫
ξ2···ξT−1

dR(ξ1, · · · , ξT ) =

∫
ξ2,...,ξT−1

exp

Å−c(ξ1, . . . , ξT )

λKL

ã
dF0(ξ1, . . . , ξT )

The second term is minimized at F ∗|1,T = R|1,T . Therefore, (28) can be reduced to the

static Schrödinger bridge problem:

inf
F1,T∈Π̃(ν1,νT )

DKL(F1,T‖R1,T ) (29)

where Π̃(ν1, νT ) is the set of all joint distributions of (ξ1, ξT ) with marginals ν1 and νT .

Note that:

dR1,T (ξ1, ξT ) =

Ç∫
ξ2,...,ξT−1

exp

Å−c(ξ1, . . . , ξT )

λKL

ã
dF0(ξ2, . . . , ξT−1|ξ1, ξT )

å
dF 1,T

0 (ξ1, ξT )

By Assumption 2(iii), we have R1,T ∼ F 1,T
0 . By Assumption 2(ii), we have R1,T ∼

ν1 ⊗ νT . Therefore, Πfin(ν1, νT ) := {F ∈ Π̃(ν1, νT ) | DKL(F‖R1,T ) < +∞} 6= ∅. By

Assumption 2(ii) and Nutz (2021) Theorem 2.1, the unique solution to (29) has the

form:
dF ∗1,T (ξ1, ξT )

dR1,T (ξ1, ξT )
= exp (φ∗1(ξ1) + φ∗T (ξT )) R1,T -a.s.

and φ∗1 ∈ L1(ν1), φ∗T ∈ L1(νT ). By Nutz (2021) Theorem 3.2, we have:

inf
F1,T∈Π̃(ν1,νT )

DKL(F1,T‖R1,T ) = sup
φ1∈L1(ν1),φT∈L1(νT )

Eν1φ1+EνTφT−
∫

exp (φ1 + φT ) dR1,T+1

Multiplying both sides by λKL and letting φ1 := λKLφ1 and φT := λKLφT , we have:

inf
F1,T∈Π̃(ν1,νT )

λKLDKL(F1,T‖R1,T ) = sup
φ1∈L1(ν1),φT∈L1(νT )

Eν1φ1+EνTφT−λKLER1,T
exp

Å
φ1 + φT
λKL

ã
+λKL

Then, we have:

dF ∗(U) = dF ∗1,TdF
∗
|1,T = exp

Å
φ∗1(ξ1) + φ∗T (ξT )− c(U)

λKL

ã
dF0(U)

where φ∗1 and φ∗T are the unique maximizers up to an additive constant.

3. Markov Property: Assumption 2(iv) implies that c(U) is also pairwise additive, i.e.,
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c(U) =
∑T−1

t=1 ct(ξt, ξt+1) for some ct(ξt, ξt+1). Therefore, we can write:

dF ∗(U) = exp

(
T−1∑
t=1

−ct(ξt, ξt+1)

λKL
+
φ∗1(ξ1) + φ∗T (ξT )

λKL

)
dF0(U)

which has Markov property as F0 has Markov property.39

4. Since κTI(δ, P ) ≥ κ̃TI(δ, P ) and the solution to κ̃TI(δ, P ) corresponding to λ∗KL > 0 has

the Markov property, we have: κTI(δ, P ) = κ̃TI(δ, P ).

B.3.2 Proof of Theorem 4

Proof of Theorem 4. The proof of minimax part is similar to Lemma 11. Lemma 7(ii) is

replaced by Lemmas 7(x) and 7(ix). Lemma 7(iii) is replaced by Lemma 7(xi). Finally, the

bounds on the cost function is replaced by the finite constant in Assumption 2(iii).

B.3.3 Proof of Lemma 1

Proof of Lemma 1. Let π1, π2 be the unique solutions to the EOT problem with respect

to ν1, ν2, respectively. Then, π := λπ1 + (1− λ)π2 ∈ Π̃(λν1 + (1− λ)ν2, νT ) for all λ ∈ [0, 1].

By Nutz (2021) Lemma 1.3, the KL divergence is jointly convex. Therefore, we have:

DKL(π‖(λν1 + (1− λ)ν2)⊗ νT ) ≤ λDKL(π1‖ν1 ⊗ νT ) + (1− λ)DKL(π2‖ν2 ⊗ νT )

Therefore, we have:

EOT(λν1 + (1− λ)ν2, νT ) ≤
∫
c̃(ξ1, ξT )dπ(ξ1, ξT ) + λKLDKL(π‖(λν1 + (1− λ)ν2)⊗ νT )

≤ λ

∫
c̃(ξ1, ξT )dπ1(ξ1, ξT ) + (1− λ)

∫
c̃(ξ1, ξT )dπ2(ξ1, ξT )

+ λKL (λDKL(π1‖ν1 ⊗ νT ) + (1− λ)DKL(π2‖ν2 ⊗ νT ))

= λEOT(ν1, νT ) + (1− λ)EOT(ν2, νT )

See Goldfeld et al. (2024) Lemma E.23 for the directional derivative.

39The left part is the (unnormalized) pairwise Markov random field Wainwright et al. (2008).
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B.4 Proofs in Section 4

B.4.1 Proof of Lemma 2

Proof of Lemma 2. By the continuity of EF [m(U ; θ, v(α))], AI , ÂI are closed. By Rudin

et al. (1976) Theorem 2.35, a closed subset of a compact set is compact. Therefore, AI , ÂI
are compact as A is compact (Lemmas 8(i) and 9(i)). For the nonempty part, see the proof

of Theorem 5.

B.4.2 Proof of Theorem 5

Proof of Theorem 5(i). 1. Since εn ≥ ‖P0 − Pn‖∞, we have AI ⊆ ÂI .

2. If AI = A, the result is trivial.

3. Suppose AI 6= A. By Assumption 3(v), we have for some δ(ε) > 0:

inf
d(α,AI)>ε

‖EF [m(U ; θ, v(α))]−Pn‖∞ ≥ inf
d(α,AI)>ε

‖EF [m(U ; θ, v(α))]−P0+op(1)‖∞ ≥ δ(ε)+op(1)

Similarly, we have:

sup
ÂI
‖EF [m(U ; θ, v(α))]−P0‖∞ ≤ sup

ÂI
‖EF [m(U ; θ, v(α))]−Pn+op(1)‖∞ ≤

cn√
n

+op(1) = op(1)

Therefore, with probability approaching 1:

sup
ÂI
‖EF [m(U ; θ, v(α))]− P0‖∞ < δ(ε) ≤ inf

d(α,AI)>ε
‖EF [m(U ; θ, v(α))]− Pn‖∞

which implies that: with probability approaching 1, ÂI
⋂
{α : d(α,AI) > ε} = ∅.

Thus, ÂI ⊆ {α : d(α,AI) ≤ ε} with probability approaching 1. Therefore, we have

with probability approaching 1, dH(ÂI ,AI) ≤ ε. As ε is arbitrary, dH(ÂI ,AI) = op(1).

Lemma 14 (Existence of a Polynomial Minorant). Under Assumptions 3, 4, and 5, we have

for ∀ ε ∈ (0, 1) there exists (κε, nε) such that for all n ≥ nε, we have:

‖EF [m(U ; θ, v(α))]− Pn‖∞ ≥
C1

2
min{C2, d(α,AI)}

uniformly on {α|d(α,AI) ≥ κε√
n
} with probability at least 1− ε.
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Proof. Note that:

√
n‖EF [m(U ; θ, v(α))]− Pn‖∞ = ‖

√
n(EF [m(U ; θ, v(α))]− P0) +

√
n(P0 − Pn)‖∞

≥
∣∣‖√n(EF [m(U ; θ, v(α))]− P0)‖∞ − ‖

√
n(P0 − Pn)‖∞

∣∣
=
∣∣‖√n(EF [m(U ; θ, v(α))]− P0)‖∞ −Op(1)

∣∣
where we used ‖x+y‖ ≥ |‖x‖−‖y‖| and

√
n(P0−Pn) = Op(1). Therefore, for ∀ ε there exists

Mε > 0 and nε,1 such that for all n ≥ nε,1, with probability at least 1 − ε: |Op(1)| ≤ Mε.

Choose (κε, nε) such that nε ≥ nε,1, C1κε ≥ 2Mε, and
√
nC1C2 ≥ 2Mε for all n ≥ nε. Then,

with probability at least 1− ε: uniformly on {α : d(α,AI) ≥ κε√
n
}:

‖
√
n(EF [m(U ; θ, v(α))]− P0)‖∞ −Op(1) ≥ ‖

√
n(EF [m(U ; θ, v(α))]− P0)‖∞ −Mε

≥
√
nC1 min{C2, d(α,AI)} −Mε

≥ 1

2

√
nC1 min{C2, d(α,AI)}+

1

2

√
nC1 min{C2,

κε√
n
} −Mε

≥ 1

2

√
nC1 min{C2, d(α,AI)}

Therefore, with probability at least 1− ε: uniformly on {α : d(α,AI) ≥ κε√
n
}:

‖EF [m(U ; θ, v(α))]− Pn‖∞ ≥
1

2
C1 min{C2, d(α,AI)}

Proof of Theorem 5(ii). For ∀ ε > 0, let the positive constants (κε, nε) be as specified

in Lemma 14. Let c̄ := max{C1

2
κε, cn}. Furthermore, there exists nε′ ≥ nε such that for all

n ≥ nε′ , with probability at least 1 − ε: εn := c̄
C1
2

√
n
≤ C2 as cn√

n
= op(1), and εn ≥ κε√

n
.

Therefore, with probability at least 1− ε, for all n ≥ nε′ :

inf
α,d(α,AI)≥εn

‖EF [m(U ; θ, v(α))]− Pn‖∞ ≥
C1

2
min{C2, d(α,AI)} ≥

C1

2
min{C2, εn} ≥

C1

2
εn =

c̄√
n
≥ cn√

n

Therefore, combining the first part in Theorem 5(i) we have: with probability at least

1 − ε: AI ⊆ ÂI ⊆ {α|d(α,AI) ≤ εn}. Thus, dH(ÂI ,AI) ≤ εn. Therefore, we have: for

∀ ε > 0, there exists nε′ such that for all n ≥ nε′ , we have: with probability at least

1 − ε: dH(ÂI ,AI) ≤ εn. As ε is arbitrary, we have |dH(ÂI ,AI)
max{1,cn}√

n

| ≤ max{C1
2
κε,cn}

max{1,cn}C1
2

:= M1,ε with

probability at least 1− ε. Therefore, we have dH(ÂI ,AI) = Op(
max{1,cn}√

n
).
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B.4.3 Proof of Theorem 6

Proof. It is a direct consequence of Lemma 5 and Theorem 5

B.4.4 Proof of Theorem 7

Proof of Theorem 7. We verify conditions in Bonnans and Shapiro (2013) Theorem 4.25.

We first verify the setting in Bonnans and Shapiro (2013) Page 260. By Bogachev and

Ruas (2007) Theorem 4.6.1, all real countably additive measures on (U ,B(U)) with the

variation norm is a Banach space. Therefore, the product of Rdθ and all real countably

additive measures with the variation norm plus the Euclidean norm is also a Banach space.

Therefore, the setting is satisfied.

Moreover, by Lemmas 8(i), 8(ii), 9(i), and 9(ii), the sets F and Frelaxed are closed and

convex. By Assumption 3(i), Θ is also closed (as it is compact) and convex. Therefore,

A is closed and convex. According to Bonnans and Shapiro (2013) equation (2.194), the

Robinson’s constraint qualification (defined in their equation (2.163)) is equivalent to As-

sumption 8(i). In their notation, G(α, P ) := P (α) − P and f(α, P ) = s(α). Thus, the

Robinson’s constraint qualification holds.

By Bonnans and Shapiro (2013) Theorem 4.9. The Robinson’s constraint qualification

implies the directional regularity condition for any direction.

Therefore, by Bonnans and Shapiro (2013) Theorem 4.25, the maps κ(δ, P ) and κ̃TI(δ, P )

are Hadamard directionally differentiable at P0, and note that DPL(α, λ, P0)h = −λTh where

L(α, λ, P ) := s(α) + λT (P (α)− P ).

The asymptotic distribution follows Fang and Santos (2019) Theorem 2.1.

B.5 Proofs in Section 5

B.5.1 Proof of Theorem 8

Proof of Theorem 8. The quantization rate is in Eckstein and Nutz (2024) Remark 2.1.

Other parts follow directly from Eckstein and Nutz (2024) Theorem 3.1(i).

B.5.2 Proof of Theorem 9

Lemma 15. Under Assumptions 3 and 9(ii), AδI,Lip is compact.
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Proof. By Assumption 9(ii), ΠTH and ΠTI are both tight, and by Prokhorov’s theorem they

have compact closure. By passing to the limit in the equation for marginals, ΠTH and ΠTI

are closed, which implies AδLip = {F ∈ P(U) | F ∈ Π, DKL(F‖F0) ≤ δ} is closed where Π is

either ΠTH or ΠTI. By Lemma 6(i) and Rudin et al. (1976) Theorem 2.35, AδLip is compact.

By Assumption 3(v), AδI,Lip is closed. Therefore, it is compact.

Lemma 16. Let Π be either ΠTH or ΠTI. Under Assumption 9, DKL(F‖F0) is continuously

differentiable on {F ∈ Π|DKL(F‖F0) ≤ δ}.

Proof. The directional derivative40 of DKL(F‖F0) in the direction F1 is:

DFDKL(F‖F0)(F1 − F ) = −DKL(F‖F0) +

∫
log

dF

dF0

dF1

which is linear in F1. Under Assumption 9, we have:

| log
dF (U)

dF0(U)
− log

dF (U ′)

dF0(U ′)
| ≤ 1

C3

(|dF (U ′)− dF (U)|+ |dF0(U ′)− dF0(U)|) ≤ 2L

C3

‖U ′ − U‖

Therefore, log dF (U)
dF0(U)

is Lipschitz continuous in U . Moreover, as log dF (U)
dF0(U)

is bounded from

above, we have log dF
dF0
∈ L1(F2) for any F2 ∈ Π. By the Kantorovich-Rubinstein duality41,

it holds that: ∣∣∣∣∫ log
dF

dF0

(dF2 − dF3)

∣∣∣∣ ≤ 2L

C3

W1(F2, F3)

which implies the directional derivative is continuous in F as W1 is a metric on P(U), (see

Villani (2021) Remark 7.13(iii)), and thus Gâteaux differentiable.

Moreover, for any F1, F2, F ∈ Π, let ‖ · ‖TV be the total variation norm, we have:∣∣∣∣∫ log
dF1

dF2

dF

∣∣∣∣ ≤ C4

C3

∫
|dF1(U)− dF2(U)|dU =

2C4

C3

‖F1 − F2‖TV

Furthermore, note that:

|DKL(F1‖F0)−DKL(F2‖F0)|

≤
∣∣∣∣∫ dF1 log dF1 −

∫
dF2 log dF2

∣∣∣∣+

∣∣∣∣∫ (dF1 − dF2) log dF0

∣∣∣∣
=

∣∣∣∣∫ dF1(log dF1 − log dF2) +

∫
(dF1 − dF2) log dF2

∣∣∣∣+

∣∣∣∣∫ (dF1 − dF2) log dF0

∣∣∣∣
40See Nutz (2021) equation 1.10.
41See Villani (2021). The cost function is c(U,U ′) = ‖U ′ − U‖.
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≤ 2C4

C3

‖F1 − F2‖TV + 4| logC4|‖F1 − F2‖TV =

Å
2C4

C3

+ 4| logC4|
ã
‖F1 − F2‖TV

Therefore, we have:

‖DF1DKL(F1‖F0)−DF2DKL(F2‖F0)‖op ≤
Å

4C4

C3

+ 4| logC4|
ã
‖F1 − F2‖TV

which implies its Gâteaux derivative is also continuous in F in the operator norm topology.

Therefore, DKL(F‖F0) is continuously differentiable on {F ∈ Π|DKL(F‖F0) ≤ δ}.

Proof of Theorem 9. Consider the following optimization problem:

κ(δ, P0) = inf
α∈Θ×ΠTH

s(α) s.t. P (α) = P0, DKL(F‖F0) ≤ δ

Note that ΠTH is convex and closed, AδI,Lip is compact by Lemma 15, and s(α) is continuous.

By the extreme value theorem, the infimum is achieved. Therefore, Aδ,∗I,Lip is nonempty.

We aim to show the Hadamard directionally differentiability of κ(δ, P0) in the directional

d := (1, 0dP ). We will verify the conditions in Bonnans and Shapiro (2013) Theorem 4.25.

In particular, we verify the directional regularity condition in the direction d := (1, 0dP ) for

all α∗ ∈ Aδ,∗I,Lip. By Lemma 16, DKL(F‖F0) is continuously differentiable on ΠTH. Therefore,

the setting in Bonnans and Shapiro (2013) Page 260 is satisfied.

For α∗ = (θ∗, F ∗) ∈ Aδ,∗I,Lip, by Bonnans and Shapiro (2013) Theorem 4.9, the directional

regularity condition in the direction d is equivalent to:

0 ∈ int

{(
DKL(F ∗‖F0)− δ
P (α∗)− P0

)
+

(
DF ∗DKL(F ∗‖F0)(Π− F ∗)− [0,+∞)

DP (α∗)(Θ× Π− α∗)− 0dP

)
−

(
(−∞, 0]

0dP

)}

By Assumption 9(iv), the second part is satisfied. The first part is straightforward as

−[0,+∞)− (−∞, 0] = R.

Assumption 9(v) is the same as Assumption (iii) of Theorem 4.25 in Bonnans and Shapiro

(2013). Moreover, Assumption 9(vi) is the same as Assumption (iv) of Theorem 4.25 in

Bonnans and Shapiro (2013). Therefore, Bonnans and Shapiro (2013) Theorem 4.25 shows

the right differentiability of κ(δ, P0).

The proof for κ̃TI(δ, P0) is the same.
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B.6 Proof in Section 7

B.6.1 Proof of Lemma 3

Proof of Lemma 3. (i) See Rust et al. (2002) Theorem 1.

(ii) • (⇐) Suppose V ∗(ω) is the unique fixed point of (9).

(Existence) Note that s0(ω) := 1− exp (ω − V ∗(ω)) is a fixed point of (15).

(Uniqueness) Suppose s0(ω) is a fixed point of (15). Let V (ω) := ω − log(1 −
s0(ω)). Then, we show that V (ω) is a fixed point of (9). It suffices to show that:

βE [V (ω′)|ω] = log (exp(V (ω))− exp(ω))

where the right-hand Side equals to ω+log
Ä

s0(ω)
1−s0(ω)

ä
, and the left-hand side equals

to βE [ω′ − log(1− s0(ω′))|ω]. Since s0(ω) is a fixed point of (15), we have RHS

= LHS. Therefore, V (ω) is a fixed point of (9).

Prove by contradiction. Suppose there are two fixed points s0(ω) and s̃0(ω) to

(15). Then, we have: V (ω) = ω − log(1 − s0(ω)), Ṽ (ω) = ω − log(1 − s̃0(ω))

are both the fixed points to (9) as shown above. Since (9) has a unique fixed

point, we have V (ω) = Ṽ (ω) for all ω. Therefore, we have s0(ω) = s̃0(ω) for all

ω. Contradiction.

• (⇒) Suppose (15) has a unique fixed point s∗0(ω).

(Existence) Note that V (ω) := ω − log(1− s∗0(ω)) is a fixed point of (9).

(Uniqueness) Suppose V (ω) is a fixed point. Then, we show that s0(ω) :=

1−exp (ω − V (ω)) is a fixed point of (15). As V (ω) = ω− log(1−s0(ω)) is a fixed

point of (9), we have: exp (ω − log(1− s0(ω))) = exp (ω)+exp (βE [ω′ − log(1− s0(ω′))|ω]).

It implies 1
1−s0(ω)

= 1 + exp (βE [ω′ − log(1− s0(ω′))|ω]− ω). Rearranging it

shows that s0(ω) is a fixed point of (15).

Prove by contradiction. Suppose there are two fixed points V1(ω) and V2(ω) to

(9). Then, we have: s0(ω) = 1 − exp (ω − V1(ω)), s̃0(ω) = 1 − exp (ω − V2(ω))

are both the fixed points to (15) as shown above. Since (15) has a unique fixed

point, we have s0(ω) = s̃0(ω) for all ω. Therefore, we have V1(ω) = V2(ω) for all

ω. Contradiction.

(iii) This is a direct consequence of the above argument.
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